Binary mixtures of magnetic fluids
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Theory

We describe a mixture of a van der Waals fluid and a ferromagnetic Ising fluid at zero magnetic
field in the framework of mean field theory.
Molar Helmholtz free energy:
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First order surfaces
Conditions for equilibrium of two phases o and 3:
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Conjugated field A of the concentration x:
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Second order critical lines

At a second order critical point two phases become identical. The conditions for criticality are
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where G, is the Gibbs free energy. In terms of the Helmholtz free energy this yields
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The function m (V,, x) is implicitly defined by the magnetic equation of state in (2).

Surface of magnetic
phase transitions

The locus of second order ferromagnetic-
paramagnetic phase transitions is a surface
in x, 1, V-space, given by
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Via equation (2) a surface in x, T, p-space is de-
fined dividing the thermodynamic space into an
upper part (m > 0) and a lower part (m = 0).

Tricritical lines

Second order critical lines on the surface of mag-
netic phase transitions are tricritical lines. Ex-
panding the magnetic equation of state in (2) as
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which is valid in the vicinity of the magnetic phase
transition surface where m < 1, one can take the
limit m — 0 in (12) and gets an equation in T
and x that can be written as
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where A(x) = a(x,0) /Ry + %x% B(x) =
A'(x) /2 and C (z) = B’ ().

In the limit of infinite pressure, the concentration
Too On the tricritical line is given by
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and there is no tricritical point with x < zoo. For
some parameter values however, (19) becomes neg-
ative, in which case the tricritical line takes on a
maximum pressure value and ends in a critical end
point on a first order surface.
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Summary

While in ordinary binary fluid mixtures tricritical points occur only under special circumstances,
mixtures with a magnetic fluid component show lines of tricritical points, lines of critical end
points and magnetic consolute points. Further investigations will include Gibbs Ensemble
Monte Carlo simulations [3] of such mixtures which allow for the percolation limit that is not

considered in the mean field calculations.
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