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Time scale ratios and critical dynamics

An overview is given of recent results concerning systems described by a set of
at least two slow dynamical variables. The simplest model contains a relaxing
order parameter coupled to the energy density (model C). The effects induced
by randomness in such a model are discussed. At the superconducting transition
the gauge dependence of the critical dynamics is considered for a model of two
coupled relaxation equations.

1. Introduction

Near a phase transition one observes the phenomenon of critical slowing

down for the order parameter (OP) dynamics. The time scale for reaching

the equilibrium state increases when the critical point is approached. Thus

the dynamics separates into slow and fast dynamic variables. A correct de-

scription of the critical dynamics has to take into account all slow variables

besides the OP. These are the densities of conserved quantities (CD). The

dynamic universality classes therefore depend on the structure of the sys-

tem of these variables, namely on the number of CDs and the type of the

coupling to the OP. These dynamic unversality classes have been reviewed

by Hohenberg and Halperin.1

In principle each of the dynamics variables, which have to be taken into

account has its own time scale but near the critical point in many cases it

was observed that the time scales of all variables behave in the same way and

this was the basis for the dynamic scaling hypothesis which characterized

the critical dynamics by one dynamical critical exponent z defined by the

dispersion ωc(k) = Akz of the OP characteristic frequency at the critical

temperature Tc, where k is the wave vector modulus and A a non universal

amplitude setting a time scale. Later on it was recognized that there are

cases where the critical dynamics cannot be described by only one critical

time scale but the time scales of the OP and the CDs might be different.
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We shall review here some examples where this is the case.

2. The time scale ratio in a simple dynamic model

The simplest example where time scale ratios (TSRs) can be studied is

a system whose critical dynamics is defined by a nonconserved OP ~φ0,

described by a relaxation equation, coupled to one CD m0, described by a

diffusive equation.2 The coupling of the OP and the CD is accomplished

by a term in the static functional H , which enters the restoring force. This

model was named1 model C and reads explicitly

∂~φ0

∂t
= −

o

Γ
δH

δ~φ0

+ ~θφ
∂m0

∂t
=

o

λ∇
2 δH

δm0
+ θm (1)

The stochastic forces fulfill Einstein relations which assure an approach of

an equilibrium described by the static functional

H =

∫

ddx

{

1

2

o
τ (~φ0 · ~φ0) +

1

2

n
∑

i=1

~∇φi0 · ~∇φi0 +

o
ũ

4!
(~φ0 · ~φ0)

2

+
1

2
amm

2
0 +

1

2

o
γ m0(~φ0 · ~φ0)−

o

hm m0

}

. (2)

The usual φ4 theory has been extended by a Gaussian part for the CD

and the asymmetric coupling
o
γ between the CD and the OP squared. The

important dynamical parameter is the TSR
o
w=

o

Γ /
o

λ
We applied the field theoretic formalism3 to this model and calculated

the fixed point (FP) value of the TSR as function of space dimension d

(ε = 4 − d) and number of components n of the OP (the so called ’phase

diagram’) in two loop order.5,6 It turns out that the FP value of the TSR

might be (i) nonzero and finite, (ii) zero or (iii) infinite. Case (i) is the

so called strong scaling FP, case (ii) the weak scaling FP and (iii) a FP

with unclear scaling properties.2,4 In the region of the (ε, n)-space where

the specific heat does not diverge the FP value of the asymmetric coupling
o
γ is zero and the two equations decouple. Then the system belongs to the

universality class of a simple relaxational model (model A). The CD then

may be characterized by a dynamic exponent zCD = 2. On the basis of

the correct two loop field theoretic functions5,6 one concludes that the FP

of case (iii) does not exist (see Fig. 1 (a)). An infinite FP value of the

TSR w (quantities without a super or subscript zero are renormalized)is

suppressed by a logarithmic term lnw in the ζ-function for the relaxation
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Fig. 1. (a) ’Phase diagram of model C’; (b) Time scale ratio of model C (ρ? = w?/(1+
w?)).

rate Γ, however such a term leads to a nonanalytic dependence of the TSR

in the limit where ε goes to zero (d → 4).

3. Randomness and the time scale ratio

One may ask how defects and randomness influence the dynamic critical

behavior of model C. Randomness can be induced by several effects eg.

(i) bond disorder, (ii) site disorder or (iii) anisoropic axis disorder. This is

shown in the following spin-Hamiltonian

H = −
1

2

∑

R,R′

J(|R−R′|)cRcR′
~SR

~SR′ −D0

∑

R

(x̂R
~SR)2,

where the disorder is defined in case (i) by a distribution of the spin

couplings J like p(J) = exp
(

−J2/∆
)

, in case (ii) by probability p(c)

of occupation c = 1 or vacancy c = 0 and in case (iii) by a non-

isotropic distribution of the directions of the anisotropy axis x̂ p(x̂) =
1

2m

∑m
i=1

[

δ(m)(x̂− k̂i) + δ(m)(x̂+ k̂i)
]

.

From static considerations formulated in the so called Harris criterion7

one may argue in the following: If the pure system’s specific heat is diverging

then the critical exponents may be changed by disorder (this is the case for

the examples given). The disordered system is then characterized by a non-

diverging specific heat. Otherwise disorder remains in the universality class

of the pure system.If the specific heat is not diverging the coupling γ of a

CD to the OP goes to zero and model A applies (see Fig 1(a) left to the

dashed line). Therefore the coupling of a conserved density is in any case
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irrelevant. However this is only an argument which holds in the asymptotics.

From statics one knows8,9 that the static critical behavior observed might
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Fig. 2. Effective dynamical critical exponents in model C for a Heisenberg magnet with
random anisotropy (from11) (a) for the OP (b) for the CD.

be an effective one, therefore one may consider also effective dynamical

critical behavior.10,11 Therefore effective dynamical critical exponents are

defined by the field-theoretic function ζΓ of the kinetic coefficient Γ of the

OP and ζm of the CD m

zeff = 2 + ζΓ({ui(`)}, γ(`), w(`)), zeff
m = 2 + ζm({ui(`)}, γ

2(`)). (3)

They depend on the solution of the flow equations of the static model para-

meters ui(`), γ(`), and the TSR w(`). It turns out that including a CD leads

to a new small dynamic transient exponent.12 Thus nonasymptotic effects

might be observable. In such a case the effective scaling of the OP and CD

are in general different as shown in Fig. 2. Quite recently the asymptotic

critical dynamics of model A for the Ising model has been studied by com-

puter simulations13 and it has been demonstrated that (as one expected)

the dynamics of case (i) and (ii) belong to the same universality class.

4. Gauge dependence of the time scale ratio

The static critical behavior of a superconductor is described by a complex

OP ~ψ (generalized to n/2 components) and the gauge field ~A coupled to

the OP by the minimal coupling. The corresponding static functional reads

H =

∫

ddx
{1

2
r̊|~ψ0|

2 +
1

2

n/2
∑

i=1

|(∇ − i̊eA0)ψ0,i|
2

+
ů

4!
(|~ψ0|

2)2 +
1

2
(∇ × A0)

2 +
1

2ς̊
(∇ · A0)

}
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This coupling is due to the charge of the electrons building the conden-

sating Cooper pairs. Renormalization group theory calculated a ’charged’

FP describing the critical behavior of superconductors of the second kind.

Experimental verification has been found by measuring the behavior of

the penetration depth.14 Moreover RG theory predicts that nonmeasurable

quantities may show a dependence on the gauge choosen in the calculation,

whereas measurable quantities have to be gauge independent. Thus some

of the static critical exponents like γ (OP susceptibility) or η (decay at Tc
of the OP correlations) are gauge dependent whereas exponents like ν or

α are gauge independent. The usual scaling laws are completely consistent

with this behavior.15

Recently a dynamical model has been suggested for the critical dy-

namics of superconductors of the second kind16 consisting of two coupled

relaxational equations for the OP and the vector potential as follows

∂ψ0,i

∂t
= −2Γ̊ψ

δH

δψ+
0,i

+ θi ,
∂A0,α

∂t
= −Γ̊A

δH

δA0,α
+ θα.

The TSR is now defined as w = Γ/ΓA. At the weak scaling FP (here

w? = ∞) different time scales for the characteristic frequencies are obtained

ωψ ∼ kzψgψ(kξ) ωA ∼ kzAgA(kξ) (4)

and zA is found to be gauge independent as it must be since it can

be measured via the frequency dependent conductivity17 σ(k = 0, ω) =

ξzA−2+ηAG(ωξzA) ∼ ξzA+2−d in the limit ξ → ∞ with the exact result for

the static exponent ηA = 4 − d and a finite value of the scaling function

G(∞). But this FP is dynamically unstable. At the stable strong scaling

FP (w? finite and gauge dependent) z = zψ = zA = 2 + 18
n ε− ς 6

n
ε

1+w? thus

zA turns out to be gauge dependent.18 In consequence the strong scaling

FP of this model cannot describe the critical dynamics. Either the model

does not apply or the stability of the FPs is changed in higher loop order.

5. Outlook

Two other longstanding problems (i) the dynamical critical behavior at

the tricritical point in 3He-4He mixtures21 and (ii) the dynamical critical

scattering above the Neel temperature TN of the three-dimensional Heisen-

berg antiferromagnet22 are related to the FP value of the TSR w. In both

cases the critical dynamics is described by a model more complicated than

model C, containing mode coupling terms in the dynamic equations. In (i)

the FP value of one of the TSRs turned out to be infinite in a one loop
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calculation19 (similar to model C). In two loop order (for the same reason

as in model C) this FP is absent and it turns out that the mass diffusion is

diverging contrary to measurement20 (for more details see Ref.21). In the

second case the FP value of the TSR between the kinetic coefficients of the

staggered magnetization and the magnetization changes in two loop order22

from roughly w? = 3 to w? = 1, which changes the dynamic shape func-

tion. This has to be taken into account in the comparison with experiment23

since it changes the size of the additional elastic component observed in the

critical scattering.24
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