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We study correlation effects and excitations in a dipolar Bose gas bilayer which is modeled by
a one-dimensional double well trap that determines the width of an individual layer, the distance
between the two layers, and the height of the barrier between them. For the ground state calculations
we use the hypernetted–chain Euler Lagrange method and for the calculation of the excitations we
use the correlated basis function method. We observe instabilities both for wide, well-separated
layers dominated by intra-layer attraction of the dipoles, and for narrow layers that are close to
each other dominated by inter-layer attraction. The behavior of the pair distribution function leads
to the interpretation that the monomer phase becomes unstable when pairing of two dipoles becomes
energetically favorable between or within layers, respectively. In both cases we observe a tendency
towards “rotonization”, i.e. the appearance of a soft mode with finite momentum in the excitation
spectrum. The dynamic structure function is not simply characterized by a single excitation mode,
but has a non-trivial multi-peak structure that is not captured by the Bijl-Feynman approximation.
The dipole-dipole interaction between different layers leads to additional damping compared to the
damping obtained for uncoupled layers.

I. INTRODUCTION

Experimental advances in achieving Bose-Einstein con-
densation (BEC) of atoms with large magnetic moment
(52Cr [1, 2], 164Dy [3], 168Er, [4]) and in generating
quantum gases of heteronuclear molecules (KRb [5–8],
LiCs [9], LiK [10], RbCs [11, 12]) by Feshbach associa-
tion have lead to a growing interest in effects caused by
the dipole-dipole interaction (DDI): the shape of trapped
condensates [13, 14], the stability against collapse [2, 15],
the dynamics [16–21], or generation of novel phases with
topological order [22] (see also the review Ref. 23). The
strength of the DDI can be characterized by the dipo-
lar length r0 = mCdd/(4πh̄

2), where m is the mass of
the dipolar atom or molecule and Cdd is proportional
to the square of the dipole moment. For magnetic mo-
ments, r0 is usually much smaller than for electric dipole
moments of molecules, which can range to thousands of
Å. Since achieving BEC with heteronuclear molecules is
much harder than with homonuclear molecules, Er2 is a
promising candiate to reach a much stronger DDI regime
with purely magnetic dipole moments [24].

The two-dimensional limit of a dipolar Bose gas (DBG)
polarized perpendicularly to the plane has been studied
extensively by quantum Monte Carlo methods [18, 25–28]
for a wide range of dimensionless densities nr20, includ-
ing high densities where the dipole-dipole repulsion leads
to such strong in-plane correlations that the excitation
spectrum exhibits a roton similar to the roton in super-
fluid 4He, and even higher densities where the ground
state of the 2D DBG is a triangular crystal. Such large
nr20 may soon be in experimental reach because r0 can be
very large, as mentioned above. For the 2D DBG with
tilted polarization a stripe phase has been predicted re-
cently for sufficiently large tilt angle [20, 29]. Also the
more complicated case of a quasi-2D layer was studied,
i.e. of a DBG in a one-dimensional trap Uext(z). The

finite extent in this direction allows pairs of particles
to explore the anisotropy of the DDI. Already by using
the mean field approach of the Gross-Pitaevskii equa-
tion, “rotonization” of a quasi-2D layer of a polarized
DBG was found to occur if the strength of the DDI sur-
passes a critical value with respect to the short-range
repulsion[17, 30]. The roton in this case is not a signa-
ture of the repulsive correlations as in the 2D limit for
high densities, but a signature of the attractive correla-
tions for head-to-tail configurations of pairs of dipoles.
We have shown this conclusively in Ref. 19, where even a
cross-over between these two kinds of rotons was demon-
strated by variation of the trap length. While the effect
of attractive correlations on the excitation spectrum can
be qualitatively described by mean field methods that
optimize only the ground state density by the Ritz’ varia-
tional principle, repulsive correlations leading to 4He-like
rotons require the optimization of at least density and
pair density. This is exactly what the family of hyper-
netted chain Euler-Lagrange (HNC-EL) methods does.
The HNC-EL method was therefore used in Ref. 19 in
order to investigate both kinds of rotons. A summary
of how HNC-EL works is given in the next section, all
details about the method can be found in Ref. [31].

In this work we extend our previous investigation of
a single quasi-2D DBG layer [19, 32] to a bilayer. The
coupling between layers via the long-ranged DDI and the
possibility of pairing of dipoles on different layers to form
dimers (and more generally of n bound dipoles in n lay-
ers) has been investigated previously [33, 34]. Superflu-
idity of fermionic bilayers was studied in Ref. [35]. The
bound and scattering states of just two dipoles on differ-
ent layers have been studied [36, 37] as well.

Our bilayer is realized by a one-dimensional double well
potential

Uext(zi) = A {cos (qzi − π) + λ cos (2qzi − 2π)} . (1)
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A DBG in this trap is homogenous and infinitely large in
x– and y–direction and finite in the confinement direction
z. The dipole moments are aligned along the z–direction,
therefore the dipole-dipole interaction (DDI) potential
takes the form

Vdd(ri, rj) =
Cdd

4π

1− 3 cos2 ϑij
r3ij

(2)

where ϑij is the angle between the dipoles i and j mea-
sured from the z–axis, and rij = |ri−rj |. To stabilize the
system against collapse [2] we add a hard core repulsion,
that is modeled by a r−12ij potential. The Hamiltonian de-
scribing this many–body system, in the reduced length
and energy units, r0 = mCdd/(4πh̄

2) and ε0 = h̄2/(mr20)
respectively, looks as follows:

H = −1

2

N∑
i=1

∇2
i +

N∑
i=1

Uext(zi) (3)

+
∑
i<j

Vdd(ri, rj) +
∑
i<j

( σ
rij

)12
.

In previous work [16, 17, 19, 32] it was established
that a translationally invariant single layer of a DBG
in a one dimensional harmonic trap can become unsta-
ble due to the attractive part of the interaction. The
pair distribution calculated in Ref. 19 shows that this
instability can be understood as a dimerization, where
two dipoles can form a bound state; such weakly bound
dipoles would not be stable and indeed experiments with
52Cr [2] and 168Er [4] observe a collapse of the BEC for
traps that are too wide in the polarization direction. Sim-
ilarly, two coupled layers can become unstable not only
due to the attractive interaction within a layer, but also
due to the attraction between dipoles in different layers.
This latter “instability” actually indicates the dimeriza-
tion of dipoles in different layers. As long as the barrier
between the layers is high enough that the two bound
dipoles remain in their respective layer, such a dimerized
phase would be stable.

We have studied the DBG in the trap potential (1) for
various potential parameters A, q, and λ that control the
barrier height between the wells, their separation, and
their individual width. We changed the parameters such
that we can study the transition from two broad, but
well-separated layers to two thin, but close layers. We
thereby go from a limit that is dominated by intra-layer
attraction to a limit dominated by inter-layer attraction.
Both limits are characterized by the appearance of a soft
mode (roton) with a respective typical parallel wave num-
ber k‖x = O(1). In the first limit, x = aho is the oscillator
length of the approximately harmonic well felt by each
layer; in the second limit, x = d is the distance between
the layers. The six combinations of potential parameters
A and q that we used are listed in the first two columns
of table II; λ was fixed to λ = 0.3. The corresponding
trap potentials are plotted in the lower panel of Fig. 1.

We note that, although the average of the DDI over
the whole plane vanishes, two dipoles on different two-
dimensional planes separated by a distance d always
dimerize, i.e. form a weakly bound state due to the at-
tractive head-to-tail well of the DDI, regardless of the
value of d [38]. Hence in the zero density limit, the
ground state is always dimerized. At finite density, our
calculations in the 2D limit show that dimerization is
suppressed by many-body effects [39]. In other words,
increasing the density in the two layers stabilizes the
monomer phase.

II. GROUND STATE

For our calculations of the ground state properties
we use the hypernetted–chain Euler Lagrange (HNC-
EL) method, which is a variational method suitable for
strongly correlated systems [31]. Starting point is a
Jastrow–Feenberg ansatz for the many-body wavefunc-
tion

ψ0(r1, . . . , rN ) = exp

[
1

2

∑
i

u1(ri) +
1

2

∑
i<j

u2(ri, rj)

]
(4)

which is optimized by solving the Euler-Lagrange equa-
tions numerically

δ 〈H〉
δρ(r)

= 0 ,
δ 〈H〉
δg(r, r′)

= 0 .

Here ρ(r) ≡ ρ1(r) is the one-body density and g(r1, r2) =

ρ2(r1, r2) (ρ(r1)ρ(r2))
−1

is the pair distribution function.
ρ1(r) and ρ2(r1, r2) are special cases of the n-body den-
sity reduced from the full N -body probablity of the (nor-
malized) full wave function ψ0(r1, . . . , rN )

ρn(r1, . . . , rn) ≡
N !

(N − n)!

∫
d3rn+1 . . . d

3rN |ψ0(r1, . . . , rN )|2

Due to translational invariance in x and y-direction,
for the present layer geometry all two-body functions,
such as the pair distribution function, depend on three
variables: the modulus of the projection of r ≡ r1−r2 on
the plane, r‖ =

√
(x1 − x2)2 + (y1 − y2)2, and the two z-

components z1 and z2. Hence we effectively have a pair
distribution function g(z1, z2, r‖).

All calculations are done for a total area density of
nr20 = 1, i.e. nr20 = 1/2 for each of the two layers.
The HNC equations can be formulated in terms of Mayer
cluster diagrams known from classical statistical mechan-
ics [40]. The exact solution of the HNC equations would
require the calculation of a class of diagrams called ele-
mentary diagrams that cannot be summed exactly. Ele-
mentary diagrams are especially important at high den-
sities, while they can be neglected a lower densities. Fur-
thermore, we note that we use a Jastrow–Feenberg ansatz
that does not extend to triplet correlations, u3(ri, rj , rk).
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q A ∆E µ

2.70 2 · 104 8.4 · 10−1 15.86

2.00 2 · 104 5.6 · 10−2 16.41

1.00 2 · 104 1.9 · 10−6 16.05

0.50 2 · 103 3.6 · 10−4 10.09

0.20 1 · 103 8.4 · 10−9 4.69

0.16 5 · 102 5.9 · 10−8 3.04

TABLE I. Table containing the potential parameters A and
q, the corresponding tunnel splitting for a single particle and
the chemical potential µ of the many-body system.
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FIG. 1. The density profile ρ(z) is shown in the upper
panel and the trapping potential Uext(z) according to eq. (1)
is shown in the lower panel. The respective trap parameters
q and A are listed in the upper panel. Uext(z) was scaled by a
factor of 100

A
in order to show all potentials in the same figure.

From 4He we know that both elementary diagrams and
triplet correlations are important for quantitative agree-
ment with experiment and quantum Monte Carlo simu-
lations [41]. For the area density used in this work, we
have checked the influence of the elementary diagrams
and the triplet correlations in the 2D limit. In this limit
correlations are stronger than for quasi-2D geometries,
so the 2D limit gives a conservative estimate of their
importance. We found that they improve the accuracy
of the static structure function S(k) (see below) by less
then 2%. Therefore we neglect elementary diagrams and
triplet correlations.

In table II we show the six parameter combinations
that we choose for the trap potential (1) along with the
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single particle

FIG. 2. The density profile ρ(z) is shown for the three wider
traps and compared with the single-particle density |φ0(z)|2
in the same traps (dotted lines).

tunnel splitting for a single particle and the chemical
potential µ of the many-body system. µ is measured
with respect to the single-particle ground state energy,
i.e. with respect to a non-interacting Bose gas in the
same trap potential. As expected, the chemical potential
increases if we decrease the thickness of the individual
layers, which is due to the intra-layer repulsion of both
the DDI and the short-range interaction. With increas-
ing parameter q, the two trap wells are not only getting
closer, but, with our choice of parameter combinations,
also the tunnel splitting increases. As mentioned above
we gradually move from thick layers that are widely sep-
arated to thin layers that are close to each other, while
keeping the total area density fixed at nr20 = 1. The re-
sults for the density profiles ρ(z) of the DBG in the trap
potentials can be seen in the upper panel of Fig. 1. The
corresponding trap potentials Uext(z) are shown in the
lower panel using the same line style and color (online).
Uext(z) is scaled by the inverse of the trap parameter A
such that all six potentials can be shown using the same
scale. Each potential is offset such that the ground state
energy of a single particle is zero.

In the limit of zero density or in the non-interacting
limit, the density profile is given by the square of
the ground state solution, |φ0(z)|2, to the one-body
Schrödinger equation H1 = − 1

2∇
2+Uext(z). How closely

the density |φ0(z)|2 of the one-body problem approxi-
mates the density ρ(z) of the many-body problem de-
pends on the area density n and the strength of the in-
teractions, but also on the strength of the trap poten-
tial. For very tight confinement, the eigenenergies of H1

above the ground state energy (or above the first two
modes in case of a double well) have energies so high
that their contributions to the N -body ground state can
be neglected. The weaker the confinement, the more
|φ0(z)|2 and ρ(z) will differ from each other. This is
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FIG. 3. Static structure function S(k‖) as a function of the
parallel momentum k‖ for the six different trapping poten-
tials.

indeed what we find for the three weaker traps with
(q, A) = (0.50, 2 · 103), (0.20, 1 · 103), and (0.16, 5 · 102).
The comparison in Fig. 2 between |φ0(z)|2 and ρ(z)
shows that the interactions lead to a wider density ρ(z),
that does not agree anymore with the one-body assump-
tion |φ0(z)|2. For the three more confined geometries,
|φ0(z)|2 and ρ(z) are almost indistinguishable (not shown
in Fig. 2). Note that this does not mean that a DDI in
a tight trap is well described by the one-body Hamilto-
nian H1; the opposite is true, in-plane correlations are
stronger in a tight trap [19].

For the layer geometry we define a static structure
function S(k‖) as

S(k‖) = 1 +

∫
d3rd3r′ eik‖(r−r′)[g(r, r′)− 1] (5)

= 1 +

∫
dzdz′d2r‖ e

ik‖r‖ [g(z, z′, r‖)− 1]

where k‖ is the parallel wave number, g(r, r′) is the pair
distribution function introduced above and k‖ is any
wave vector in the xy-plane with wave number k‖. Note
that S(k‖) depends only on k‖, while we integrate over
the z and z′ dependence of g(r, r′). In Fig. 3 we show the
static structure function S(k‖) as a function of k‖ for the
six traps studied here. As we go from well-separated thick
layers to close thin layers we observe a peak in S(k‖) in
both limits, whereas the peak vanishes in between. It is
natural to assume that for wide layers the peak is caused
by correlations due to the intra–layer attraction of the
dipoles whereas at for a small layer distance it is caused
by correlations due to the inter–layer attraction of the
dipoles. However, S(k‖) does not contain enough infor-
mation to distinguish between the these two mechanisms.

In order to gain information about intra- and inter-
layer correlations, we define the partially integrated pair
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FIG. 4. Integrated two-body density (see text) for particles
in the same layer ρ11 (bottom panel), and particles in different
layers ρ12 (top panel)

densities ρ11(r‖) and ρ12(r‖),

ρ11(r‖) =
4

ρ20

∫ ∞
0

∫ ∞
0

dzdz′ ρ2(r‖, z, z
′) (6)

ρ12(r‖) =
4

ρ20

∫ 0

−∞

∫ ∞
0

dzdz′ ρ2(r‖, z, z
′) (7)

The prefactors are chosen such that ρij(r‖) → 1 for
r‖ → ∞, thus ρ11(r‖) and ρ12(r‖) can be regarded as
intra- and inter-layer pair distribution functions. They
are the normalized probabilities to find two dipoles in the
same layer and in opposite layers at a parallel distance
r‖, respectively, regardless of their z-coordinate within
the layer. ρ11(r‖) and ρ12(r‖) are shown in the lower and
upper panel of Fig. 4 for all six traps. For wide, but well-
separated layers there are strong intra-layer correlations
at r‖ = 0, whereas the inter-layer correlations are vanish-
ingly small. This means that two particles in the same
layer have a very high probability for head-to-tail config-
urations, with no parallel separation. As we decrease the
thickness of each layer, these intra-layer correlations van-
ish. At the same time we decrease the distance between
layers, thereby increasing the inter-layer correlations. For
the smallest distance, two particles in different layers are
strongly correlated and have a high probability for head-
to-tail configurations. Since the layer is thin, particles in
the same layer have a vanishing probability for zero par-
allel separation because of the DDI and the short-range
repulsion. In both limits of two independent wide traps
and two close narrow traps the respective strong positive
correlations of ρ11 and ρ12 suggest a tendency towards
dimer formation, where two dipoles align head-to-tail ei-
ther within a layer or across two layers.



5

What happens, if we would drive the system to even
larger correlation peaks in ρ11(r‖) or ρ12(r‖)? The insta-
bility with respect to dimerization manifests itself as a
numerical instability of the HNC/EL equations. Unlike
other approximations, the HNC/EL equations have the
benefit that they do not produce a solution, if a ground
state of an assumed variational form does not exist. In
the present case, the Jastrow-Feenberg ansatz (4) does
not allow for the dimerization that our above analysis of
intra- and inter-layer pair distributions clearly suggests.
Since the ground state we try to compute does not ex-
ist, our iterative procedure to solve the HNC/EL equa-
tions does not converge. In order to actually compute
the properties of the dimerized phase, one would have
to optimize a variational ansatz that is flexible enough
to allow dimerization, or alternatively perform quantum
Monte Carlo simulations, as e.g. in Ref. [20].

III. EXCITATIONS

A. Bijl-Feynman modes

Owing to the translational invariance, excitations can
be characterized by a parallel (i.e. in-plane) wave num-
ber k‖. For a given k‖ there are in principle an infinite
number of excitations, that are indexed by a perpendic-
ular quantum number n ∈ N associated with out-of-
plane motion. Especially for narrow double-well traps
these modes have a much higher energy than the low-
est two modes in the interesting regime of wave numbers
k‖, therefore we restrict our discussion to the two low-
est modes and the appearance of a soft mode. In Fig 5
we show the first and the second excitation mode, ε1(k‖)
and ε2(k‖) in Bijl-Feynman approximation as a function
of k‖ for the six layer geometries for which we studied
the ground state above. The first and the second ex-
citation mode are almost degenerate for a large distance
between layers and considerably split for a small distance.
Two completely independent DBG layers would of course
have two-fold degenerate excitation energies. Even for
the most separated layers, the Feynman dispersion is not
truly degenerate, but split for small wave numbers. In
order to illustrate this, we show the energy difference
∆ε(k‖) = ε2(k‖) − ε1(k‖) between the two lowest Feyn-
man energies as a function of k‖ in Fig. 6 for the two
traps closest to instability. The lifting of the degeneracy
can only be due to the DDI that is long ranged and hence
couples even well separated layers. We can estimate the
typical range of parallel wave numbers for which excita-
tions are most strongly affected. We assume a circular
density wave ∼ J0(kr), of wave number k, in one layer.
A particle at r = 0 in the other layer will feel a partic-
ularly strong dipole force if k is such that J0(kr0) = 0
where r0 is the radius where the DDI changes from attrac-
tive to repulsive. r0 is given by r0 = d tan θ, where θ is
the angle of the attractive cone of the dipole interaction,
cos θ = 1/

√
3, which gives r0 = d

√
2. From this we get an
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FIG. 5. Energy of the first and the second excitation mode
in Bijl–Feynman approximation for different distances of the
layers (lines), in comparison to the energies obtained for two
2D layers (dots).

estimate for the wave vector k at which we observe the
strongest dipole coupling, which is k = 2.4048/(d

√
2). If

we estimate d as the distance between the two maxima of
the density profiles shown in the top panel of Fig. 1, we
obtain k ≈ 4 and k ≈ 0.24 for the closest and most sep-
arated layers, respectively. This simple estimate agrees
reasonably well with the maximum energy splitting of
the Feynman spectrum at k = 5 and k = 0.35 in Fig. 6.
Note that for k = 0 the DDI averages out, leading to zero
DDI-induced splitting for k → 0, which is what we ob-
serve for well-separated layers. For the closest layers the
splitting at k = 0 is large, however, which is caused by our
short-range repulsion model (σ/r)12 which at such small
d can be felt between different layers. One could decrease
σ without compromising the stability against intra-layer
dimerization, but we preferred to tune only the external
trapping potential while keeping the interaction parame-
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FIG. 6. Difference ∆ε(k‖) between the energies of the two
lowest excitation modes in Bijl-Feynman approximation.

ters fixed. Furthermore, the tunnel splitting is not small
anymore for the closest layers, adding to the splitting
caused by the short-range repulsion.

In order to test our conclusions regarding inter-layer
coupling for two layers of finite thickness, we also per-
formed calculations for the limit of two 2D layers. In
this case the interaction within the same layer is purely
repulsive ∼ r−3 and the attractive part of the interaction
is completely missing. Positive correlations are possible
only for the inter-layer pair distribution ρ11(r‖). The 2D
results for the two lowest Bijl-Feynman energy disper-
sions are shown as symbols in Fig. 5. For the wide layers
that are far apart, the quasi-2D and 2D results differ sub-
stantially (top left panel), which demonstrates that the
bending of the dispersion towards forming a roton is an
intra-layer effect. As we make each layer narrower, the
quasi-2D and 2D results become almost identical. This
means that the intra–layer attraction plays less of a role
and the roton formation is truly an inter–layer effect.
Note that in the 2D limit, the splitting between the two
lowest modes vanishes for k‖ → 0 in agreement with the
above argument that the DDI averages out when inte-
grated over the whole 2D plane.

B. Dynamic structure function from CBF-BW

Calculations of the excitations in the 2D limit of single
layers have shown [18] that the Feynman approximation
is adequate for the dispersion relation only at very low
densities, but correlation effects become more important
as the density is increased and fluctuations of pair corre-
lations must be taken into account. Pair correlation fluc-
tuations are accounted for in the correlated basis func-
tion - Brillouin-Wigner (CBF-BW) formalism [42]. The
CBF-BW method not only improves the accuracy of the
excitation energies, it also describes damping via decay
of collective modes into lower energy modes. We will
see that the DDI coupling between layers leads to even
larger deviations of qualitative features of the excitation
spectra in the Feynman approximation.

FIG. 7. S(k‖, E) is shown for six different traps, with the trap
parameters q and A given in each panel. For better visibility
of low-intensity features, we map S(k‖, E)1/4 to a gray scale.
The full lines trace undamped peaks, the dotted lines are the
dispersion relations in Bijl-Feynman approximation.

The CBF-BW method was adapted to layer/film ge-
ometries in Ref. [43] and applied to superfluid 4He films
[43–45] and recently to single layers of a DBG [19]. The
CBF-BW method has been demonstrated to yield excita-
tion energies much closer to the experimental results than
the Feynman approximation, even for such a strongly cor-
related system as 4He. Further improvement had been
achieved for bulk 4He by including fluctuations of triplet
correlations [46]. The added complexity, however, pre-
cludes an application to inhomogeneous systems.

The CBF-BW excitation energies are conveniently
obtained by following the linear response approach
that yields the density-density response operator
χ(r, r′, E) and – via the fluctuation-dissipation theo-
rem [47] – the dynamic structure function S(r, r′, E) =
−=mχ(r, r′, E)/π, where E/h̄ is the frequency of a small
external perturbation. The derivation of χ(r, r′, E) can
be found in Ref. 43. If we project S(r, r′, E) onto plane
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waves

S(k, E) =

∫
d3rd3r′ eik(r−r

′)S(r, r′, E)

we obtain the inelastic cross section for a perturbation
imparting the momentum h̄k to the system. For a given
k, a peak in S(k, E) at an energy E = Ē indicates an
excitation of energy Ē. Peaks can have zero linewidth,
if decay of an excitation is kinematically forbidden, or
finite linewidth otherwise. Translation invariance in the
xy-plane implies that the projection k‖ of k on the xy-
plane is a good quantum number. A perturbation trans-
ferring a parallel momentum h̄k‖ and energy E to the
system probes the dispersion relation εn(k‖) of the col-
lective excitations, that we have calculated above in the
simpler Feynman approximation. One might think that,
since only the parallel component of k matters for mea-
suring the dispersion relation, we can restrict ourselves
to a parallel k, with a vanishing perpendicular compo-
nent k⊥. However, the corresponding dynamic structure
function S(k‖, E) probes only excitation modes of even
symmetry with respect to the xy-plane. Since we are
interested not just in the lowest (even) mode but also
in the second (odd) mode, we will show S(k, E) also for
wave vectors k which have an angle θ with the xy-plane.
A purely perpendicular perturbation (k‖ = 0) could be
implemented by fluctuations of the trapping potential (1)
itself, but such a perturbation does not probe the disper-
sion relation.

1. Parallel Momentum Transfer

In Fig.7 we show S(k,E) for the six different traps
shown in Fig.1, the parameters given in table II and
for wave vectors k that are parallel to the xy-plane, i.e.
k⊥ = 0 and hence k‖ = k. S(k,E) is represented in Fig. 7

by mapping S(k,E)1/4 to a gray scale. The power of 1
4

makes sure that also broad, but low-intensity features
can be seen well. Full lines track peaks of S(k,E) of zero
linewidth, i.e. which are proportional to a δ-function.
The resulting line is an undamped dispersion relation.
For sufficiently large wave number k, the dispersion rela-
tion merges with the gray area, where damping by decay
of an excitation into two lower-energy excitations is kine-
matically possible (i.e. energy and momentum are con-
served). The Bijl-Feynman spectrum is shown as dotted
lines for comparison, including also higher modes. For
wider, well separated traps, the Bijl-Feynman dispersion
agrees quite well with the CBF-BW result – even for
the widest trap where a roton starts to form due to the
intra-layer instability (top left panel). Of course, the
Bijl-Feynman approximation does not account for damp-
ing. As we confine the two layers more strongly by in-
creasing both trap potential parameters A and q, the
dipole coupling between films leads to a splitting of the
Bijl-Feynman energies, as discussed above. S(k,E) has
a much richer structure that is poorly represented by the

Bijl-Feynman spectrum. On the one hand the density
increases as the trap tightens (see Fig.1), and the Bijl-
Feynman approximation becomes worse at higher den-
sity. On the other hand, the DDI between layers leads,
in addition to a splitting of excitation energies, also to
more decay channels.

FIG. 8. The left panels shows S(k‖, E) for A = 2 · 104 and
q = 2.0 as in Fig.7, i.e. with inter-layer DDI. The right panel
shows the corresponding S(k‖, E) when the DDI between the
layers is switched off.

We demonstrate the importance of inter-layer DDI
coupling by switching it off for the two traps resulting
in the closest layers (A = 2 · 104 and q = 2.0; 2.7). This
is simply achieved by setting Vdd to zero if z1 and z2
have opposite signs. In Figs. 8 and 10 we show S(k‖, E)
with the full DDI in the left panels and without inter-
layer DDI in the right panels. For q = 2.0 (Fig. 8), the
lack of inter-layer DDI almost completely decouples the
two layers, leading to an almost degenerate Bijl-Feynman
spectrum. What we get is the dynamic structure func-
tion of a single layer, which has been studied in Ref. 19.
The inter-layer DDI leads to significant additional damp-
ing for higher energies, seen by the wider peak in the en-
ergy regime where the dispersion becomes approximately
quadratic. Note that even without inter-layer DDI, there
is a bend in the dispersion for q = 2.0, which shows it is
not so much caused by inter-layer coupling, but by the
intra-layer repulsion of the DDI that, for much higher
area density, results in the type of roton studied in Ref. 18
in the 2D limit.

While a full S(k‖, E) map is necessary to track the dis-
persion relation, the detailed line shapes of the various
peaks are best seen by plotting slices of S(k‖, E) for fixed
values of k‖. The top panel of Fig. 9 shows, for trap pa-

rameters A = 2 · 104 and q = 2.0, a slice of S(k‖, E) at
k‖ = 5.0, which is slightly below the value of k‖ where the
sharp dispersion curve merges into the damping regime
and thus becomes broad (see full S(k‖, E) map in Fig. 8).
The full line and dashed line are the results for S(k‖, E)
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FIG. 9. A slice of S(k‖, E) with (full line) and without

(dashed line) inter-layer DDI, with A = 2 · 104 and q = 2.0.
k‖ = 5.0 in the upper panel and k‖ = 8.0 in the lower panel.
The vertical lines in the upper panel indicate the respective
energies of the undamped mode. Arrows show the respective
excitation energies in Bijl-Feynman approximation.

with and without inter-layer DDI, respectively. The cor-
responding excitation energies in Bijl-Feynman approx-
imation are indicated by arrows. The vertical lines are
the undamped peaks of the sharp dispersion. We see that
S(k‖, E) has only one broadened peak without inter-layer
DDI, while the inclusion of the inter-layer DDI leads to
two broadened peaks. We stress again that for parallel
momentum transfer, S(k,E) only probes the lower, even
mode, hence the two broad peaks are not due to the split-
ting of a degenerate eigenmode (S(k‖, E) for non-parallel
momentum transfer is presented below).

As k‖ is increased further, the sharp peak loses
more and more spectral weight and eventually becomes
damped. This case is shown in the lower panel of Fig. 9,
where k‖ = 8.0 and the sharp dispersion has vanished
for both the coupled and uncoupled bilayer, see Fig. 8.
Again there is only a single peak without inter-layer DDI
and two peaks with inter-layer DDI. The lower peak is
caused by the DDI coupling while the higher one is only
shifted slightly with respect to its position without DDI
coupling. Note that the DDI coupling approximately
doubles the width of the higher peak, hence reduces the
lifetime of the associated excitation by about a factor of
two. Thus, as one can expect, the dipole-dipole coupling
between layers leads to faster decay of excitations com-
pared to uncoupled layers.

Finally, in Fig. 10 we compare S(k,E) with and with-
out inter-layer DDI for even closer layers (A = 2 · 104

and q = 2.7). The bending is now significantly enhanced
by the inter-layer DDI. In CBF-BW approximation, the
dispersion (blue line) has a small slope at k‖ = 3, i.e. the
system is close to “rotonization”. Note that the residual

FIG. 10. Same as Fig. 8 for A = 2 · 104 and q = 2.7.

splitting of the dispersion without inter-layer DDI is due
to tunneling and the short-range repulsion as mentioned
above.

2. Non-Parallel Momentum Transfer

Parallel momentum transfer only probes those exci-
tations which are even with respect to inversion at the
z = 0-plane, because a perturbation independent of z is
even and therefore cannot excite odd modes. In order to
probe odd modes, we study S(k, E) for wave vectors k
with an arbitrary angle θ with respect to the z = 0-plane.
Fig. 11 shows S(k, E) for θ = 0; 20; 40; 60; 80, for trap pa-
rameters A = 2 · 104 and q = 2.7. We plot S(k, E) as a
function of k‖, not |k|, since only k‖ is a good quantum
number that is meaningful for characterizing the excita-
tion spectrum. Unlike in all previous figures of S(k, E),
we now add an artificial small imaginary part η = 0.1
to the energy E which slightly broadens all features of
S(k, E). The rationale behind this broadening is that
it makes the spectral weight of peaks with zero intrinsic
linewidth visible.

The case θ = 0 was shown already in Fig.7 (without
artificial damping), and is shown here again for better
comparison with θ > 0. For θ = 0 indeed only the lowest,
even mode is visible. As θ is increased, a second mode be-
comes visible and gains weight. For θ = 60, both modes
can be seen equally clear in S(k, E) where they appear
as a narrow dark trace. Note that the second, odd mode
is damped for small k‖. This is very different from the
low-k‖ behavior of the lowest mode (sound mode) which
is not damped because of its negative curvature. The
damping of the second mode can be seen as a broaden-
ing (in addition to the artificial broadening) for k‖ <∼ 1.8.
We introduce the damping limit En,m(k‖) which is the
energy above which an excitation of parallel wave num-
ber k‖ can decay into two modes with perpendicular wave
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FIG. 11. S(k, E) is shown as a function of k‖ for different angles θ of k with respect to the plane of the bilayer. The trap

parameters are A = 2·104 and q = 2.7 and S(k, E) was broadened by adding a small imaginary part to the energy, η = 0.1. As θ
is increased, the second excitation modes becomes visible in S(k, E). The dots are the energies in Bijl-Feynman approximation,
and the dashed lines are the damping limits En,m(k‖) discussed in the text.

number n and m. En,m(k‖) is given by

En,m(k‖) = min
q‖

[εn(k‖) + εm(|q‖ − k‖|)]

where, due to the limitations of the CBF-BW approxima-
tion, εn(q‖) are the excitation energies in Bijl-Feynman
approximation, not the excitation energies following from
CBF-BW itself (inclusion of triplet correlations has
been shown for homogeneous systems to lead to a self-
consistent formulation of the self-energy, see Ref. [46]).
Even modes can decay into combinations where n+m is
even and vice versa for odd modes. Since we are inter-
ested only in decays of the lowest two modes, we obtain
three decay limits, which fulfill E1,1(k‖) < E1,2(k‖) <
E2,2(k‖). They are shown in Fig.11 as dashed lines. The
lowest mode can decay into (n,m) = (1, 1) and (2, 2) and
the second mode can decay into (n,m) = (1, 2). The ef-
fect of these respective limits are clearly seen in Fig.11.
Damping indeed sets in as the dispersion relation of the
mode crosses the damping limit with a symmetry appro-
priate for the mode.

Also visible in Fig.11 are interference patterns that
lead to a modulation of the intensity of S(k, E) as k‖
and thus k⊥ = k‖ tan θ is increased. These are simply
due to the perpendicular wave number k⊥ being in phase
or out of phase with even or odd modes. For example, a
value of k⊥ ≈ π/d, where d is a measure for the distance
between the layers, leads to a cancellation of the inten-
sity for even modes, but to a maximal intensity for odd
modes.

IV. DISCUSSION AND CONCLUSION

In this work we generalized our previous studies [19] of
dipolar Bose gas layers from a single layer in a harmonic

trap to double-well traps which results in a bilayer ge-
ometry. As in our previous work, the bilayer calculations
are based on the HNC-EL method for the many-body
ground state and on the CBF-BW method for excita-
tions. Dipolar bilayers have a richer structure than sin-
gle layers owing to the inter-layer dipole coupling. The
possibility of head-to-tail pairing of two dipoles on dif-
ferent layers leads to similar rotonization effects in the
non-paired (monomer) phase as previously predicted in
single layers. We restricted ourselves to the calculation
of ground state correlations of the monomer phase, as
well as its excitation spectrum, including damping due
to decay of excitations into two lower excitations.

We systematically varied the double-well trap parame-
ters between two close, but thin layers and two well sep-
arated, but wide layers, while keeping the total area den-
sity fixed at a modest nr20 = 1. The two end points of the
range of trap parameters are marked by instabilities of
the monomer phase. Either if layers are too close or if one
layer is too wide, inter-layer or intra-layer dimerization
occurs, respectively. The latter kind of dimers are not
stable and would quickly collapse via 3-body collisions,
but inter-layer dimers are stable, given a sufficiently high
double well barrier. The propensity to pairing was clearly
seen in the monomer pair distribution functions ρ12(r‖)
or ρ11(r‖), which are the normalized probabilities to find
two dipoles in different or the same layers, respectively,
at a parallel distance r‖. We showed that, at r‖ = 0,
ρ12(r‖) grows a peak for small interlayer distance, while
ρ11(r‖) grows one if each single layer is sufficiently wide.
In both cases, the peak of ρij(r‖ = 0) is a precursor to
the pairing of two dipoles in head-to-tail orientation.

We presented calculation of the dynamic struc-
ture function S(k, E) in the CBF-BW approximation.
S(k, E) for parallel momentum transfer probes only even
modes, where we are mostly interested in the lowest one.
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S(k, E) typically consists of a lower, undamped peak
(that vanishes for higher k‖) and two broad peaks that
are due the inter-layer DDI coupling (without it, there is
only one broad peak), which also enhances damping. The
double-peak structure is not to be confused with the more
trivial effect that each mode is split into two because the
inter-layer DDI lifts its degeneracy. The rich structure
of S(k‖, E) is not captured by the simple Bijl-Feynman
approximation which would predict a single, undamped
peak for the lowest mode. The intra- and inter-layer in-
stabilities of the monomer phase are characterized by a
bending of the dispersion relation of the lowest (intra-
layer dimer) or lowest two (inter-layer dimer) excitation
modes. This bending, that is less pronounced but still
visible in the Bijl-Feynman approximation, indicates “ro-
tonization”, which is well-studied for single layers. As in
our previous work on single layers, we found that the it-
erative procedure to solve the nonlinear set of HNC-EL
equations becomes unstable as we approach rotonization,
i.e. as the dispersion relation starts to have a local min-
imum at finite k‖. This leads to the conjecture that the
ground state is only metastable when the excitation spec-
trum exhibits a roton, while the true ground state, i.e.
the state of lowest energy is the (intra- or inter-layer)
dimerized phase. For a proof of this conjecture, however,
one would need to compare our monomer results with
results for the dimerized phase to find out which state
has the lowest energy. Finally, we also presented results
for non-parallel momentum transfer, i.e. where the angle
between k and the plane of the layers is non-zero. The
dynamic structure function depends on both the parallel

and perpendicular components of k, k‖ and k⊥. k‖ still
is a good quantum number, while the non-zero k⊥ allows
to probe also odd modes, particularly the second excita-
tion mode. Showing S(k, E) as function of the parallel
wave number, the second mode becomes clearly visible
for e.g. an angle θ = 60◦. Unlike the lowest mode, the
second mode is damped for small k‖ due to decay into
two excitations of lower energy.

An interesting topic are the correlations of the
monomer phase and its excitations generalized to N lay-
ers. The long-ranged DDI coupling between different lay-
ers for example lifts an N -fold degeneracy of the excita-
tion spectrum and opens many possible decay channels
for the resulting N modes. Another direction is the study
of “unbalanced” bilayers where the two layers have differ-
ent area densities, or bilayers with different kinds of parti-
cles (e.g. different mass) on each layer. If for example the
density in one layer is very low, the DDI interaction with
the other layer would constitute a very well controlled
model of an impurity particle moving in one layer, cou-
pled to a bath of particles in the other layer. The mech-
anism how an impurity attains an effective mass could
be investigated in a well-controlled fashion over a much
wider range of densities and interaction strengths than
in condensed matter systems.
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