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We present calculations of the ground state and excitations of an anisotropic dipolar Bose gas
in two dimensions, realized by a non-perpendicular polarization with respect to the system plane.
For sufficiently high density an increase of the polarization angle leads to a density instability of
the gas phase in the direction where the anisotropic interaction is strongest. Using a dynamic
many-body theory, we calculate the dynamic structure function in the gas phase which shows the
anisotropic dispersion of the excitations. We find that the energy of roton excitations in the strongly
interacting direction decreases with increasing polarization angle and almost vanishes close to the
instability. Exact path integral ground state Monte Carlo simulations show that this instability
is indeed a quantum phase transition to a stripe phase, characterized by long-range order in the
strongly interacting direction.

Strongly correlated dipolar Bose gases in two dimen-
sions (2D) polarized along the direction normal to the
system plane have been extensively investigated in re-
cent years [1–4], see also the review 5. The ratio between
the dipolar length r0 = mCdd/(4πh̄

2) and the average
interparticle distance provides a measure of the strength
of the interaction. Cdd is the coupling constant propor-
tional to the square of the (magnetic µ or electric d)
dipole moment, resulting in a dipolar length that can
range from a few Å for magnetic dipolar systems like
52Cr (µ = 6µB , with µB the Bohr magneton), to thou-
sands of Å for heteronuclear polar molecules like KRb,
LiCs [6], or RbCs [7]. However, chemical reactions and
three-body losses impose limitations on what can be mea-
sured in experiments with polar molecules. Therefore,
recent efforts focus also on exotic lanthanide magnetic
systems like 164Dy or 168Er, [8, 9] where the combined
effect of a large magnetic moment (µ = 10µB for 164Dy
and µ = 7µB for 168Er) and a large mass, lead to dipolar
length scales that, although still significantly lower than
the corresponding value for polar molecules, is several
times larger than that of 52Cr. Er2 with µ = 14µB and
twice the mass of Er would reach even higher values of
r0 [10].

A 2D dipolar Bose gas polarized along the normal
direction to the confining plane develops a roton exci-
tation at high density due to the strong repulsion be-
tween dipoles at short distances [3]. Other works have
revealed competing effects in a quasi-2D geometry due
to the head-to-tail attraction of the dipole-dipole inter-
action when the third spatial dimension is added, to the
point that the system becomes unstable against density
fluctuation below a critical trapping frequency in that
direction [11–13]. This leads to the question of whether
a similar situation can hold in a purely 2D geometry
when a head-to-tail component to the dipole-dipole in-
teraction is added by tilting the polarization with respect
to the direction normal to the system plane. The inter-

action becomes anisotropic, V (r) = V (x, y) = Cdd

4πr3

[
1 −

3x
2

r2 sin2 α
]
, with particles moving in the x, y-plane and

a polarization field in the x, z-plane, tilted by an angle
α with respect to the z-axis. The interaction is weak-
ened in the x-direction as α is increased, while it does
not change in the y-direction. Notice that, in the case of
bosonic particles, only polarization angles where V (r) is
non-negative, i.e. α ≤ αc = arcsin(1/

√
3) = 0.61548 . . .,

are meaningful, if there is no additional short-range re-
pulsion to prevent two dipoles from collapsing to a point.

The effect of a tilted polarization on the superfluid
response of a quasi-2D dipolar Bose gas has been inves-
tigated by mean field theory [14]. The appearance of
a stripe phase has been predicted in 2D dipolar Fermi
systems by approximate methods [15–17], observed as
a spontaneous symmetry breaking even in the isotropic
case (α = 0) for high interaction strength. However, re-
cent fixed node diffusion Monte Carlo simulations find no
evidence of that in the isotropic case before the system
crystallizes [18]. In previous work [19] we investigated
the low density regime of the 2D dipolar Bose gas of
particles interacting by the potential V (r), analyzing the
universal energy scaling properties of the anisotropic gas
and other ground state properties. Up to the maximally
allowed polarization angle αc, the low-density system al-
ways remains in a gaseous form and no trace of a stripe
phase is found. In this work we focus on the high den-
sity regimes of this system, studying the effect of the
anisotropy on the dispersion relation, especially the ro-
ton, and show how a stripe phase forms at large densities
and polarization angles. Throughout the paper, lengths
and energies are given in units of r0 and E0 = h̄2/(mr2

0),
respectively.

Before showing exact ground state results obtained
by Monte Carlo simulations, we present a qualitative
stability analysis of the ground state for a wide range
of densities n and polarization angles α. We use the
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hyper-netted chain Euler-Lagrange (HNC-EL) [20] tech-
nique, which is based on a Jastrow-Feenberg ansatz for
the bosonic many-body wave function Ψ(r1, . . . , rN ) =
exp

∑
i<j u2(ri − rj). We determine u2(r) variationally

by imposing the extremal condition
δEg

δ
√
g(r)

= 0 for the

ground state energy Eg and solving for the pair distri-
bution function g(r) within the approximate HNC-EL/0
framework. It was shown in Ref. [21] that when the low-

est eigenvalue λ0 of the hessian K(r, r′) =
δ2Eg

δ
√
g(r)δ
√
g(r′)

is non-positive, the system becomes unstable against
infinitesimal fluctuations of g(r), where the associated
eigenfunction f0(r) is the fluctuation driving the instabil-
ity. We have obtained the lowest eigenvalue and eigenvec-
tor of K(r, r′) by imaginary-time propagation. Figure 1
shows λ0(α) as function of α for a wide range of densities,
where each curve is normalized by the respective isotropic
limit, λ0(0). For all n, λ0(α) decreases with increasing α,
but there is an important distinction between its behav-
ior at low and high densities: for n <∼ 128, λ0(α) remains
finite up to αc, while for n >∼ 128 λ0(α) falls to zero
already before reaching αc. Hence the high-density gas
state is unstable above a critical angle α0 which is smaller
than αc; this is also seen by the fact that the HNC-EL
equations do not converge in the range α0 < α < αc. The
inset of Fig. 1 shows f0(r) for n = 256 at the largest an-
gle where we found solutions to the HNC-EL equations,
α = 0.58, where λ0(α0)/λ0(0) almost vanishes. Away
from the correlation hole at r = 0, f0(r) is essentially a
plane wave in the more repulsive y-direction. indicating
a tendency of g(r) towards long-range order in the y-
direction. We stress that the HNC-EL/0 results become
less accurate with larger n, hence the stability limits are
only approximate. Exact simulation results are presented
below.

The anisotropic nature of the interaction which desta-
bilizes the system beyond α0 also influences the spectrum
of elementary excitations which we investigate by calcu-
lating the dynamic structure function S(k, E). S(k, E) is
proportional to the probability that a perturbation trans-
fers momentum k and energy E to the system. Thus, for
a given k, S(k, E) has a marked peak if E coincides with
the energy of an excitation of the system. We obtain
S(k, E) using the dynamic many-body theory [22], where
the equations of motion for time-dependent fluctuations
of up to pair-correlations in the many-body wave function
are solved numerically. If the convolution approxima-
tion for the three-body distribution function [23] is used,

S(k, E) is obtained as S(k, E) = − 1
π=m

[
S(k)

E−Σ(k,E)

]
,

where Σ(k, E) is the complex, energy-dependent self-
energy of Eq. (2.46) in Ref. [22]. We note that the only
input required to calculate Σ(k, E) is the static structure
factor S(k) of the ground state.

In order to get exact results for S(k), we have carried
out stochastic simulations using the path integral ground
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FIG. 1. The lowest eigenvalue λ0(α) of the hessian of the
ground state energy Eg is shown in HNC-EL/0 approxima-
tion for densities n = 8; 32; 128; 256. λ0(α) is normalized by
the respective eigenvalue at α = 0. The inset shows the eigen-
function f0(r) for n = 256 and α = 0.58.

state (PIGS) Monte Carlo technique of Ref. [24] which
starts from a variational wave function φ0 and projects
out components orthogonal to the true ground state by
propagation in imaginary time. In this sense, the result
of the simulation becomes stochastically exact provided
the approximation employed for the Green’s function is
accurate and the propagation time is long enough [25]. In
the present case we have used as φ0 a Jastrow-Feenberg
ansatz

∏
i<j f(rij) built from the two-body correlation

factor f(r) = K0(2/
√
r), corresponding to the zero-

energy solution of the two-body problem of the isotropic
1/r3 interaction. Despite the isotropy of φ0, anisotropic
contributions are taken into account by a fourth-order
propagator [26], which contains the anisotropic potential
V (r) and its gradient. The results presented in this work
have been obtained for N = 512 particles in a simula-
tion box with periodic boundary conditions. Addition-
ally, simulations with smaller N have been carried out
in order to see the N -dependence of the highest peaks in
S(k) when n and α increase.

In Ref. 3 we studied the density dependence of S(k, E)
of the 2D dipolar quantum gas in the isotropic limit (α =
0). There we found a spectrum with a pronounced roton
for large density, due to the strong correlations induced
by the 1/r3 repulsion. Here, we are interested in the
dependence of S(k, E) on the polarization angle α and,
for a given α > 0, its dependence on the direction of
k. In Fig. 2, we show S(k, E) for n = 128 and α =
0.20; 0.50; 0.58 in order to illustrate the evolution from
an isotropic to an anisotropic excitation spectrum and
the approach to the stability limit. The wave vector k
is pointing in the y and x-direction (i.e. the direction of
strongest and weakest interaction) in the left and right
panels. We broaden S(k, E) by adding a small imaginary
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FIG. 2. S(k, E) for k = (0, k) (left panels) and (k, 0) (right
panels) for polarization angles α = 0.20; 0.50; 0.58 at density
n = 128. The spectrum in Bijl-Feynman approximation is
shown as a solid line, and the dotted line denotes the damping
limit Ec(k).

part η = 0.2 to the energy in the calculation of Σ(k, E),
since otherwise undamped modes would not be visible in
Fig. 2. Also shown is the Bijl-Feynman approximation
of the spectrum, obtained by setting Σ(k, E) = 0 (solid
line).

For α = 0.20 the dispersion is almost independent
on the direction of k, with only a slight slope of the
Pitaevskii plateau [27], which for isotropic systems de-
notes the sudden onset of damping at twice the roton
energy due to decay into two rotons. As α is increased,
S(k, E) becomes very different in the y- and x-direction
and features a highly anisotropic dispersion relation for
α = 0.58. The wave number of the roton depends on
the direction of k, but most strikingly its energy decays
almost to zero in the y-direction for α = 0.58, indicating
that the system is close to the limit where the homo-
geneous gas phase in unstable against infinitesimal den-

sity fluctuations. Since the restriction to pair correlation
fluctuations used here typically gives an upper bound
to the excitation energy [28], the exact roton energy in
y-direction is expected to be even smaller. With the
approximation used here, the roton energy of 4He was
shown to lie about half-way between the Bijl-Feynman
approximation and the experimental value [22]; for a
thorough discussion of the different approximation lev-
els of the dynamic many-body theory see Refs.22 and 28.

The dotted lines in Fig. 2 depict the damping limit
Ec(k) above which decay into two excitations of lower
energy is kinematically allowed, hence excitations be-
low Ec(k) have infinite lifetime corresponding to peaks
in S(k, E) with zero linewidth. The kinematics of an
anisotropic dispersion is different from the isotropic case.
The decay into two rotons is very efficient in an isotropic
system because of the high density of states at the ro-
ton energy. For the anisotropic phonon-roton dispersion,
the roton energy depends on the direction of k, thus the
roton energies are spread out leading to a smoother den-
sity of states than in the isotropic limit. An excitation
with about twice the energy of the low-energy roton in
y-direction can decay only into nearly parallel or anti-
parallel rotons, thus it has to have about twice the roton
momentum or about zero momentum. Considering ex-
citations in y-direction (bottom left panel), instead of a
constant Pitaevskii plateau (which would also damp the
maxon) there is a quadradic damping limit around twice
the roton wave number, leading to a roton-like peak, al-
beit broadened and with smaller spectral weight. The
dispersion relation in y-direction thus bears some resem-
blence to that of a solid continued beyond the first Bril-
louin zone. But note that for n = 128 and α = 0.58 the
system is still homogeneous, not ordered; only for den-
sities even higher, our PIGS results presented below in-
deed predict a stripe phase. For excitations in x-direction
(bottom right panel), there is a range of low momenta
where modes are damped due to decay into nearly anti-
parallel low-energy rotons in y-direction.

Both the results for S(k, E) and the qualitative sta-
bility analysis (Fig. 1) suggest that, as α increases, the
system develops a preference for long range order in the
y-direction, until the gas phase becomes unstable at a
density-dependent critical angle α0. The PIGS method
used to evaluate S(k) in the gas phase can also be used to
analyze the static properties of a system with long-range
order as the present one when the homogeneous gas is
not stable anymore. Long-range order can be character-
ized by the emergence of Bragg peaks in S(k). This is
indeed what happens when α is increased beyond α0.

Figure 3 summarizes the main PIGS results. The up-
per left panel shows with black stars the structure factor
S(k) (shifted up for better visibility) for the isotropic
(α = 0) system at n = 128, while results along the x-
and y-directions for n = 64 and α = 0.58 are depicted
with blue circles and red squares, respectively. S(k, 0)
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FIG. 3. Static structure factor (left panels) and configura-
tion snapshots (right panels) at different densities and tilt-
ing angles. S(k, 0) and S(0, k) for n = 64 and α = 0.58
is shown in the top (blue circles and red squares, respec-
tively). The black stars show the isotropic S(k) at n = 128
and α = 0. The middle and bottom panels show the S(k, 0
and S(0, k) and configuration snapshots for n = 128, α = 0.58
and n = 256, α = 0.61, respectively.

and S(0, k) are markedly different in the anisotropic case,
which is a direct consequence of the anisotropy of the in-
teraction induced by the non-vanishing tilting angle. Like
in the isotropic case, the system is in the gas phase ac-
cording to our stability analysis. We visualize this in the
upper right panel by a snapshot of one quarter of the sim-
ulation box corresponding to the (n = 64, α = 0.58) case,
where each worldline is a different particle. As expected
for a gas, there is no apparent ordering.

Results for (n = 128, α = 0.58) and (n = 256, α =
0.61) are shown in the middle and lower panel, re-
spectively. As can be seen, the system becomes more
anisotropic for larger density, the peak in S(0, k) is more
pronounced, while the peak in S(k, 0) is less affected. For
(n = 128, α = 0.58) S(0, k) is still a smooth function,
with a peak height that is independent of the number of
particles N in the simulation. Hence, it is not a Bragg
peak and the system is still homogeneous. However, for
(n = 256 and α = 0.61), the peak in S(0, k) is orders
of magnitude larger than the peak in S(k, 0) (notice the
logarithmic scale). The corresponding snapshot shows
clearly the formation of a stripe phase, which according
to S(k) is like a gas in the x-direction where the inter-
action is weak, and a solid along the y-axis where the
interaction is strong. The peak in S(0, k) grows almost

FIG. 4. Pair distribution function g(x, y) for density n = 128
and α = 0.58 (left), and for n = 256 and α = 0.61 (right).

linearly with N , which further supports its interpretation
as a Bragg peak. A second peak of less but still signifi-
cant intensity develops at twice the wave number of the
first peak. We note that for α = 0 a stripe phase has
not been observed and the isotropic system remains in
the gas phase until it solidifies into a triangular lattice at
high density [2]. The same conclusion for a fully isotropic
interaction has been reported recently for a dipolar Fermi
gas in 2D [18].

We close the discussion showing a 3D-map of the pair
distribution function g(r) for |r| < L−/2 (L− is the
smaller side of the simulation box) in Fig. 4 for the two
cases (n = 128, α = 0.58) (left panel) and (n = 256, α =
0.61) (right panel). The stripe phase becomes clearly vis-
ible in the second case as a plane wave in the y-direction,
filling the whole simulation box. For (n = 128, α = 0.58)
oscillations in the y-direction are present only for small
x and are damped with increasing y, hence g(r) becomes
isotropic for large |r| and equal to unity, consistent with
the behavior of a gas.

Summarizing, we have analyzed the behavior of an
anisotropic dipolar Bose gas in 2D, using several meth-
ods: a qualitative stability analysis of the ground state
based on the HNC-EL method, the exact calculation
of structural quantities from PIGS Monte Carlo simula-
tions, and the dynamic structure function in the pair fluc-
tuation approximation of the dynamic many-body the-
ory. All results show that for large tilting angle α and
large density n, there is a quantum phase transition to
a stripe phase, characterized by long-range order in the
direction of stronger interaction. Our calculations show
that close to the stripe phase transition – but still in the
gas phase – the phonon-roton dispersion becomes very
anisotropic and the roton energy in the y-direction al-
most vanishes, which indicates that this is the soft mode
driving the transition. This is consistent with the sta-
bility analysis that for sufficiently high density predicts
the lowest eigenvalue of the hessian of the energy contin-
uously going to zero as α is increased.
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