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Abstract We have developed a path integral ground state Monte Carlo (PIGSMC
algorithm for quantum simulation of rotating dipolar moleaylesing a highly ac-
curate sixth-order algorithm. The method allows us to calculabéased estimates
of ground state properties of dipolar molecules in a variety ofgetries, with or
without an external electric field. To demonstrate the capgghwfi the approach,
we calculate the orientational phase diagram of a one dimeaisiattice system
of rotating point dipoles in the absence of any external eledigids. We find
that for finite lattice size, this system exhibits an order-disotransition at finite
dipolar interaction strength in contrast to the well-known diaéional disorder of
the corresponding one dimensior@(3) quantum rotor models. Comparison of
the quantum Monte Carlo results with a self-consistent fieldredé of the phase
transition shows the emergence of an ordered phase at non-zetardifrength,
confirming the symmetry breaking role of the anisotropic dipofsldi interac-
tion.

1 Introduction

Ultracold molecules with a permanent electric dipole momentesmt a poten-
tially rich avenue for exploring many body physics. The intemas between
molecules are dominated by the long ranged, anisotropic ditiplde interac-
tion. Lattice systems of molecules, for example systemspaflds in deep optical
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lattices of various geometries, have been suggested as meegaining topo-
logical phases?. A number of theoretical studies have addressed the stability
dipolar condensates of polarized dipoles in various geonsetigng a variety of
methods$*5. However virtually all papers on dipolar condensates haverasd
the presence of strong external fields to orient the moleculegf#ectively sup-
press the rotational degrees of freedom, while the analyses ofadimolecules
trapped in optical lattices typically operate in a regime whiegedlational motion
is negligible!. The current work presents the first stage of a systematic analysis
the phase diagrams of such trapped dipolar condensates, siddréee possibil-
ity of observing quantum phase transitions in these systeaisatie specifically
due to the orientational degrees of freedom. Our approach is ta psgh inte-
gral ground state Monte Carlo (PIGSMC) method to simulate ensenubldipo-
lar molecules. This method has the advantage over previamployed Monte
Carlo methods that with it we are able to calculate estimatediégonal as well
as off-diagonal observables without introducing any bias diledahoice of trial
wavefunction employed. In the following, we summarize the gdiiaSMC al-
gorithm, including how we achieve an accurracy of sixth ordehatime step.
We then present first results for a model problem that demonsttetespability
of the approach to capture novel orientational phase transitiblattice-localized
dipolar molecules that result from the anisotropic nature of theldr interaction.

2 Method

In order to systematically study the effect of molecular rotatio the phases of
trapped dipolar molecules in a wide variety of situations (enagneto-optical
traps, optical lattices, low temperature solid or plastic elisie phases), we have
adapted the PIGSMC approdcto the study of molecules possessing both trans-
lational and rotational degrees of freedom. PIGSMC has been pdyiapplied

to continuous systems with translational degrees of freedom Wé describe
the general PIGSMC approach for these systems here, althoughsthapipli-
cation described in this work will be restricted to orientatioplahses of dipolar
molecules fixed on a latticee. neglecting translational degrees of freedom. We
assume a Hamiltonian of the forth= T +V(R) whereT is the total kinetic en-
ergy operator oN particles and/ is the potential energy between tNeparticles,
V(R) = (R|V(R)|R), which depends on the coordinates for all degrees of freedom
of the system, i.eR, including rotational and (if present) translational degrees of
freedom. The PIGSMC method makes use of the fact that any trtelfstaa sys-
tem of N particles,|¥r), with non-zero overlap with the true ground-stdts),

will decay to the ground state (ignoring normalization) under@ion in imagi-
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Approximations of ground state expectation values can be sgedein terms of
the imaginary time propagator and the trial state
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for sufficiently long imaginary time8. The ground state wavefunction is then
related to the trial wavefunction through the relationship (igmpriormalization)

Y(R) = [ dR'GRR:B/2%R). ©
where the integration kernel is
G(R.R':B/2) = (Rle P"|R)), )
which is the imaginary time evolution operator in the coordinagpresentation

and
Y ) (R) = (R|% () )

is the trial (ground state) wavefunction. This allows us to writevd the general
expectation value (assumitg (R) is real)

(6) = [ dR1dR2dR5dRaYF (R1)G(R1.Rzi B/2)

with the coordinate representation of the operé&or
O(R,R’) = (RIOR'). @)

Here we have allowed for the possibility that the path is brokehe center by
including an extra indeRy5. This allows the sampling off-diagonal quantities.
for “He this method has been employed to calculate the off-diagdealents of
the one-body density matfxIn the first application presented below, we employ
R2 = R}, which corresponds to sampling quantities corresponding to tipsrthat
are diagonal in the coordinate representation.

Evaluation of the integral in eq. (6) is made possible by theiogahip

G(R,R;B) = /dR”G(R7R”;B/Z)G(R”,R’;B/Z) ©)

which allows us to employ approximations to the imaginary tewelution oper-
ator valid for short imaginary time by breaking the path intantervals of length
T = 3/M. The resulting integral

/de dRy ... dRmY (R1)G(Ry, Rz T)
x G(R2,R3;T) x - x G(Rwm/2-1, Rm/2: T)O(Rwm/2, Ry 2)
X G(Ry /2, Rm/241: T) X -+ X G(Rm—1, Rm; T) ¥r (Rwm) 9)

can be evaluated by making the association between theumasytstem and a
classical linear polymer which can be simulated using stechtletropolis Monte
Carlo method®®.

The above exposition is completely general and applicabbotb rotational
and translational degrees of freedom, iRrdenotes a general set of molecular co-
ordinates. In this first work we focus on the rotational degrees of mreealone:



extension to analysis of both rotations and translationsthegevill be made in
future work. Here we therefore implement an “any order” short time apprax
tion to the imaginary time propagafdrfor the rotational motion of all dipoles.
The general expression for this any order propagator for a giveriltéann is

n

Gan(T) = zlcméz(r/w +0O(r?h (10)

i=
whereéz(r) is the well known second order propagator
éz(r) _ e—rV(Iﬁ)/Ze—rT’e—rV(ﬁ)/Z. (11)

The coefficients; are given by

ki2

=[] (12)
ie-w

with {ki} € Z and can be chosen freely but it is most often convenient to cteose

commensurate sequence since then the free particle propa@afgr,sgan be fac-
tored out?. In the current study we employ a sixth-order implementation isf th
propagator with{ki} = {1,2,4}, which is given in the coordinate representation

byll
Ge(R1,Rs5;4T1) _GO(RLRZ; T)Go(R2,R3; T)Go(R3,R4; T)Go(Ra4,Rs; T)
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whereGp(R,R’; T) is the free particle propagator.

The free rotor imaginary time propagator for a single rigid rotor fomaagi-
nary time intervalr, which forms part of the short time propagator, is well known
and given by

G (n,n'; 1) = (nje” ™ ) %2l+1 Ne TEBIIHL) (1)

wheren is the orientation of the rotoR (x) are the Legendre Polynomials, and
H; is the familiar rigid rotor Hamiltoniamd, = BL2 in which B is the rotational
constant 12I. For greater computational efficiency, the rotational propagaas
tabulated on a fine grid at the beginning of the simulation aerpolation be-
tween these values was carried out during the simulation. Timensdion oved
was from zero up to a sufficiently lardyg.x which varies with the small time step,
T, but can be experimented with before the simulation until aabletaccuracy is
achieved. The free rotor density matrix for a systergfarticles is given by the
product of single particle density matrices

0(Q,Q1 rlG l> n,n’; 1) (15)



whereQ represents all of the orientational degrees ofttr®tors.
The sampling of rotational and translational configurations agomplished
by utilizing methods previously employed in rigid body diffasiMonte Carld?
and path integral studies of van der Waals complexes and olateienpurities
in helium cluster$®. We found it convenient to use unit quaternions to sample
orientation$?. Quaternions are the four component analog of complex numbers

q=a+bi+cj+dk, (16)

with a non-commutative multiplication rulé. A quaternion may be regarded as a
combination of a scalaa, with a 3-vector(b,c,d), leading to a convenient form
of representation for rigid body rotations. Thus, a unit quatern@presenting a
rotation by anglex about the directiow is given byg = coga/2) + sin(a /2)v
which can be translated to a rotation matrix through the relatipA

_ [a®+b?—c?—d?> 2bc—2ad 2bd + 2ac
R= 2bc+2ad  a?—b?+c>—d?>  2cd-—2ab (17)
2bd — 2ac 2cd+2ab a2 —b’—c?+d?

and then used to transform the orientational vector for a parBeleause rotations
about the dipole moment do not change its orientation, theéioot axisv was
constrained to be perpendicular to the orientatiofo prevent redundancies in
the transformations, the angle was constrained to lie withirrtteeval [0, 71) and
these angles sampled from a truncated Gaussian distribution

2 —a2/4R2BT
— 2 ¢ fo<a<m
P(a) O < 2my/2r?Br . (18)

0 otherwise

To increase the efficiency of sampling paths, the well-knowititevel bisection
schemé® was employed.

In the proof of principle application shown below, the focus isarrenta-
tional ordering of dipoles fixed at points of a regular lattic®@ire dimension. To
demonstrate the power of this method for simulating stronghracting systems
when high quality trial wavefunctions are not available we eell a constant
trial wavefunction ¢ (R) = 1) which is equivalent to the wavefunction for a set
of dipoles in their ground rotational statesstate) and is the exact ground state
wavefunction in both the limit when the dipolar interactioregado zero and when
the molecular rotation constant goes to infinity. We note ithiatpossible to ob-
tain accurate results with constant trial wavefunctions alsprollems involving
translational degrees of freed8hand we therefore expect the PIGSMC method
to be useful even when good trial wavefunctions are difficult t@miok as is ex-
pected to be the case when systems with both translationabéatibnal degrees
of freedom must be considered on equal footing.

3 Application to orientational ordering transitions

In the current application we consider a model in which three dsimmal dipoles
are fixed on a one dimensional lattice oriented alongithout any external field.



The Hamiltonian describing this systemifipoles in the absence of an external
aligning field is

N
ﬁ—sizltiuijgzi_(ﬁi.ﬁ,-_smi-fi,-)(ﬁyfu)) (19)

IES ri

wheref;; is the unit vector pointing along the direction from rotoo rotor j, fi; is
the vector orientation of the dipole moment of rot@ndCgyg is the dipole-dipole
coupling constant which would &y = d?/ & in the case of diatomic molecules
with a permanent electric dipole momedtbeing the electric dipole moment of
the molecular species under consideration. The ratio

Cad
= 20
g ATi?Br, (20)

wherer4; is the nearest neighbor lattice spacing, provides a measube dft
teraction strength and will be used to scale the relative carttoibs of potential
and kinetic terms. Since these dipoles are three-dimensiaameh,fe is a three
component vector. This model is thus a generalization of tak-kmown O(3)
guantum rotor model which, in one dimension, does not possessdered phase
at any finite value of interaction strendfh In the model under consideration in
this work theO(3) symmetry of the rotors has been broken by the anisotropic
component of the interaction term (the last term in eq. (19), whasbrk “head-
to-tail” orientation of the dipoles. It has been shown that th@aeement of the
nearest neighbor interaction with an interaction which scate'r? in the O(3)
quantum rotor does not significantly impact the phase diagrfasnah a system

in one dimensiof. Consequently any new physics we may find from eq. (19) will
be solely attributable to the anisotropy of the dipole-dipatetiaction potential.

It is also useful to compare this dipolar lattice model with tii@mtum Ising
model, i.e., the Ising model in a transverse field, since the sstmyrrbroken
ground states of both of these models are related throghsymmetry*®. The
guantum Ising model in one dimension has a second order phasitita be-
tween a paramagnetic phase and a phase with long range magrusic at a
finite value of the interaction strength.

4 Results

The path length, for these simulations was ZDHartree* with a short time
step, 1, of 1.32x 101 Hartree'1. The simulation was carried out with a finite
number of dipoles, each located at fixed, evenly spaced@osin a periodic box.
We employed the nearest image convention for calculatingatengial energy of
the system. While the dipole-dipole interaction does extezybhd the nearest
neighbors we control for this effective cutoff at half the pertobdbx length by
running simulations with system sizes ranging from 6 to 64 dgdlée behavior
of the system depends only upon the value of the dimens®pl@sameteg and
not on any of the individual parametess Cyq, andry. For the purpose of this
study,B andr 4 were therefore set to convenient values and @alywas varied.
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Fig. 1 The order parametepys (eq. (22), for a system of rotating dipoles in linear chaifs o
various length$\, interacting via the dipole-dipole interaction, eq. (19%te that this measure
is always positive and thus statistical fluctuations leaa small but non-zero value gfpseven
wheng is zero and the signed order paramegés statistically zero.

For this model the limit in which the interaction strength isahgreater than
h?B constitutes a classical limit in which the rotational kicethergy goes to zero.
In this classical limit the anisotropic dipole-dipole intefantpotential results in
a specific ordering with all of the dipoles aligned alangA convenient order
parameter characterizing this classical phase is

1Y
Q= <Niz|ni>, (21)

the average dipolar polarization along theaxis. @ has a maximum magnitude of

1 for anN particle system, corresponding to all dipoles oriented in timeesdi-
rection, and is equal to zero in the disordered phase (where thetatipa value

of each of the components bf is zero). There are two symmetry related ordered
phases, corresponding to all dipoles being oriented atdnghe positive or neg-
ative direction. This results in two possible signed extrenzdlies of in the
ordered phase (1 andl), and the possibility of spontaneous symmetry breaking.
However, since the physics in the two sectors is the same, &r dodstudy the
disorder to order transition without regard to the choice of sjedirection of
order, it is more convenient to evaluate the polarization ordespeterg,ps

N
qoabs=< L > (22)

N

which is always greater than or equal to zero and allows reduofithe statistical
error associated with sampling the two equivalent sectors.

The order parameteg,ys for our simulations is plotted in Fig. 1. It is evident
that for a finite number of dipoles, there is an order-disorder itiansbetween
g =110 and 120. While it is not possible to determine the precise location of
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Fig. 2 Gaussian kernel density estimates of the distribution @fttder parametep atg = 8.0
(top left), 100 (top right), 120 (bottom left), and 1® (bottom right) for 64 dipoles, with a
gaussian bandwidth df = 0.2782. The lack of trimodal distributions and the displacetrod
the maxima suggests that the finite size phase transitiootia first order transition. Note that
the kernel density estimates should be symmetric: the agirgrseen here derives from the fact
that in such a large system the probability of inversion bélgdoles is low so that a very large
number of independent simulations are required to achigVednvergence.

this transition in the thermodynamic limit without a more thagbunvestigation
of finite size scaling effects, it is clear from the information italgle that the
transition occurs for a finite value of the interaction strength¢éntrast to the
behavior of theD(3) gquantum rotor model, for which in one dimension there is
no phase with long ranged ordér More insight into the nature of the phase tran-
sition is revealed by analysis of the distribution of the sijoeder parametéf

@. Gaussian kernel density estimatésre plotted in Fig. 2, displaying a single
peak in the disordered phase and two peakis|@t. We see no evidence for coex-
istence between the ordered and disordered phases, which wesldrialed by
three peaks of changing weight in the distributiongothroughout the transition
region. Note that we did not bias the simulation by a trial fumtthat could force
the system to stay in one of the two phases. This suggestththatder-disorder
transition in these dipolar systems is a higher order phassiti@n This comes
as no surprise since the broken symmetry ground states are reletedtiz.,
symmetry akin to the quantum Ising model, which itself possesassecond order
phase transition from a disordered paramagnetic state to an ordeaddgnetic
state in one dimension at zero temperatdr@he asymmetry of the distribution
in the symmetry-broken phase is simply a consequence of thehfacMonte
Carlo sampling of both ordered phases slows down with increasisgm size.
In the thermodynamic limit the system is no longer ergodic amy nemain in
one phase for an indefinite time. This could be easily overcoyratboducing a
orientation swap move that simultaneously reorients all éah their opposite
direction, leading to a symmetrip distribution. However, since the two phases
are completely equivalent, there is no need for such a move here.
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Fig. 3 Correlation lengtm extracted from exponential decay ©fr), plotted as a function of
interaction strengtlg, for a system of 64 dipoles. Despite the increasing errcs faarlargeg,

a peak neag = 115 is clearly visible, signaling the phase transition fronisotered phase at
low g and an ordered phase at high

We have also calculated the spatial correlation function batvteo dipoles
at lattice pointsx andx’

C(x=X[) = (M(om(x)) — ¢°. (23)

We found that spatial correlations decay approximately expaaibnwith dis-
tance, characterized by a correlation length-or a higher order phase transition,
this correlation length should diverge at the phase transifiign 3 shows the
behavior ofny for a system of 64 dipoles over a range of interaction strengths
spanning the phase transition: the peak betwpenll andg = 12 is consistent
with such a divergence, broadened by finite size effects. Fads@shows that in
the ordered phase, the error bars become prohibitively large. brdeeed phase,
our trivial choice for the trial wavefunctiotr (R) = 1, corresponding to nonin-
teracting molecules in the rotational ground state, is cleaplga approximation
for the alignment found in the ordered phase. The behavior ofttiestical un-
certainty for largeg therefore suggests that in principle our PIGSMC simulations
could be made more efficient by introducing a well-optimized tdavefunction.
However, in this work we deliberately refrained from using a trial efanction
to demonstrate that the PIGSMC simulations of rotational degséfeedom are
feasible also without a trial wavefunction. This is importantrfire complicated
Hamiltonians, e.g. dipoles on a higher-dimensional latticeere constructing a
trial wavefunction, that is guessing the ordering in the ordereg@his no longer
trivial.

We compare the results of the quantum Monte Carlo simulatiotts avéelf-
consistent field analysis in which the field-free Hamiltoniarsweplaced with
a single-site Hamiltonian corresponding to non-interactinglépin an external

field,i.e,
Hscf:le-i27L Zv(ﬁi) (24)
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Fig. 4 Orientational order parameter,s, eq. (21), from mean field analysis for a system of 32
dipoles in a linear chain, calculated withax = 4. The mean field calculation predicts a phase
transition from a disordered phase to an ordered phage 8t8 and shows no finite size effects,
in contrast to the Monte Carlo simulations.

with self-consistent potential

V(i) = S ;; (A~ (Aj) 30 (A)). (25)

1]

(A}) and hence/(fi;) are determined self consistently by diagonalizitgs for
each rotor in the basis of spherical harmonics Withlax, Wherelnax is chosen
to be sufficiently large. The order parameter eq. (21) is plcited function of
g in Fig. 4. We see that, in contrast with the location of the phaansition at
an interaction strength valuglying between 110 and 120 that is indicated by
the quantum Monte Carlo results, the mean field analysis shustsad a phase
transition already aj; = 3.8. As with the classical Ising model in two dimensions
(which is isomorphic to the quantum Ising model in one dimenSipthe mean
field analysis captures the qualitative behavior of the pliagram but under-
estimates the transition interaction strength because qudhiatuations are not
fully accounted for in the mean field approximation.

5 Conclusions

We have developed a PIGSMC code for the study of systems withiawwéh de-
grees of freedom and have demonstrated its use for the study déansykdipoles
at fixed lattice points. While this first application is a relaty simple system, the
present analysis clearly reveals the role of the anisotropy ddifhede-dipole in-
teraction in inducing orientational order. We have shown threg dimensional
systems of dipoles without translational degrees of freedomiratite absence
of an external electric field undergo an order-disorder phaseiticansT his tran-
sition occurs for values of the dimensionless constgnbear 115. Assuming
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realistic molecular values diB on the order of 10 GHz and on the order of

3 debye would imply that a lattice spacing smaller than 3 nrald/be required

in order to reach the critical valug. While this is outside the current realm of
applicability of typical optical lattice experiments, whehe optical lattice spac-
ing is on the order of 300 nm so that adjacent dipoles are sedadrgt800 nm

in the case of unit filling, when multiple dipoles can inhabit the same lattice
site the distances between molecules will necessarily behrammaller and the
interaction strength correspondingly much larger. Investigadf this regime for
trapped dipolar molecules will require incorporation of traristal motion at the
same level as the rotational motion, as described in Section 2.

We expect that the PIGSMC method will be useful for further studfethe
guantum ground state of dipolar systems, with its abilityatzelate in an efficient
manner all properties of the ground state of many body dipolsiesys whilst
sampling rotational degrees of freedom without the need to inted trial wave-
function. Another related realm in which this technique migitve useful is in
the study of quantum effects in plastic crystalline phd%ehese are phases of
matter in which there is no orientational order but yet thereilstsinslational
ordering. Simple classical models of such systems possessetyvef different
crystalline phase&. Finite temperature quantum Monte Carlo studies have shown
that quantum effects are important in orientational ordering pirema in molec-
ular crystald®22 The study of crystalline systems of dipolar molecules at low
temperatures may therefore be expected to reveal a rich phase diagemsub-
jected to external electric fields.

Generalization of our PIGSMC approach to include both tramsiatiand ro-
tational motion is underway. This will allow study of dipolgases with analysis
of translational and rotational degrees of freedom on equal fpolihe method
can then be used to study high density systems of dipolesmdtie realistic in-
teraction potentials that accurately model the short rangegiction and include
higher order multipole contributions.
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