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We study the pair correlations and excitations of a dipolar Bose gas layer using the hypernetted
chain–Euler Lagrange method for the ground state and the correlated basis function Brillouin-
Wigner perturbation theory for excitations. The anisotropy of the dipole-dipole interaction allows
to tune the strength of pair correlations from strong to weak perpendicular and weak to strong
parallel to the layer by increasing the perpendicular trap frequency. This change is accompanied by
a roton-roton crossover in the spectrum of collective excitations, from a roton caused by the head-
to-tail attraction of dipoles to a roton caused by the side-by-side repulsion, while there is no roton
excitation for intermediate trap frequencies. We discuss the nature of these two kinds of rotons and
the relation to instabilities of dipolar Bose gases. In both regimes of trap frequencies where rotons
occur we observe strong damping of collective excitations by decay into two rotons.

Ultracold dipolar Bose gases (DBG) have become a fo-
cus in the study of cold quantum gases [1–3]. Magnetic
dipole moments of atoms lead to an anisotropic and long-
ranged dipole-dipole interaction. Although small even for
high-spin atoms like 52Cr, experiments have shown that
the dipole-dipole interaction can influence the shape and
stability of a quantum gas [4]. Furthermore, there is
much experimental progress in formation and cooling of
dipolar molecules [5–11]. Their electric dipole moment
can be much larger than magnetic dipole moments, mak-
ing the dipolar interaction the dominant one. Interesting
effects have been predicted such as crystallization with-
out lattice potential [12, 13] or the influence of rotons on
the Berezinskii-Kosterlitz-Thouless transition [14].

For the homogeneous DBG in two dimensions the mean
field approximation for excitations (Bogoliubov) fails al-
ready for very low density [15]. In the present work
we investigate a DBG layer of finite thickness, i.e. the
limit of a DBG in a pancake-shaped trap with the small
trapping frequencies going to zero. Particles can ex-
plore the full anisotropy of the dipole-dipole interaction,
since the restriction to two dimensions is lifted. The
weakly interacting limit of a DBG layer has been stud-
ied using the mean field approximation (Gross-Pitaevskii
(GP) equation) where indeed dynamical instabilities were
found [16, 17], accompanied by “rotonization”, i.e. the
appearance of a local minimum at a characteristic par-
allel wave number in the dispersion relation. This roton
excitation is the soft mode driving the DBG toward in-
stability and can appear at arbitrarily low density if the
layer is thick enough. This roton has a completely differ-
ent physical origin than the roton predicted for a strongly
interacting DBG in the two dimensional limit [15] where
it is a consequence of short-range order.

Going beyond the mean field, the hyper-netted chain
Euler-Lagrange (HNC-EL) method was used in [18].
Consistent with mean field results, instabilities due to
the attractive part of the dipole-dipole interaction were
found. Close to the instability, the Bijl-Feynman approx-
imation [19] predicts a roton, and a pronounced peak

in the pair distribution function is observed, at a posi-
tion corresponding to head–to–tail configurations of the
dipoles. It was conjectured that the DBG undergoes a
quantum phase transition to a dimerized phase. Here
we present calculations of the excitation spectrum based
on the correlated basis function Brillouin-Wigner (CBF-
BW) method. CBF-BW not only yields an accurate dis-
persion relation, but also takes into account decay pro-
cesses due to scattering of elementary excitations.

We model a layer of polarized dipoles (pointing in the
z-direction, having mass m and a short range isotropic
repulsive interaction) in a harmonic trap in z-direction
with the Hamiltonian
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with rij = ri − rj and where vdd(r) = Cdd
4π

1−3 cos2 θ
r3 is

the dipole-dipole interaction. We use (σ/r)12 as a simple
model for the repulsion. Our length and energy units r0

and ε0 are given by r0 = mCdd
4πh̄2 and ε0 = h̄2

mr20
, respec-

tively, effectively eliminating the parameters m and Cdd.
All quantities are expressed in these units and are there-
fore dimensionless. The parameters of this system are
the repulsion σ, the frequency of the confining potential
Ω, and the area density n, defined as n ≡

∫
dz ρ(z) where

ρ(z) is the particle density. Dynamical instability is ap-
proached by decreasing σ (which shields the attractive
part of the potential), decreasing Ω, increasing n (both
increasing the width of the layer), or a combination of
the three.

The theoretical basis of HNC-EL and CBF-BW
for layer geometries is given in [20]. The present
work is formally similar to studies of 4He con-
fined between walls [21]. In a nutshell, a general-
ized Jastrow-Feenberg ansatz Φ0 = exp[

∑
i u1(zi) +∑

i<j u2(zi, zj , r‖,ij)] is made for the ground state where

r‖,ij =
√

(xi − xj)2 + (yi − yj)2 is the parallel distance
of two particles. The symmetry of this ansatz follows
from the trap geometry (in-plane translational invari-
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ance) as well as from the anisotropy of the dipole-dipole
interaction. According to the Ritz’ variational princi-
ple the ui’s are obtained by minimization of the energy,
δ〈Φ0|H|Φ0〉/δui = 0. We would get the Hartree ansatz
(leading to the GP equation), if pair correlations were
omitted, u2 = 0. For 4He, quantitative results are only
obtained by taking into account triplet correlations u3

and the so-called elementary diagrams E. In the present
case of a DBG layer, we set the area density to n = 2 for
which we will show that u3 and E have only a small effect
even in the worst case of the 2D limit, and we can neglect
them. Solving the HNC-EL equations, we obtain the pair
distribution function g(z, z′, r‖) which follows from divi-
sion of the probability density to find two particles at
perpendicular coordinate z and z′ and parallel distance
r‖ by the one-body densities ρ(z) and ρ(z′).

The CBF-BW approximation for excited states [22]
can be derived by allowing for time-dependent fluctua-

tions in the above ansatz, Ψ(t) = e−iE0t/h̄ eδU(t)/2

〈Ψ(t)|Ψ(t)〉Φ0

where δU(t) =
∑N
i=1 δu1(ri; t) +

∑
i<j δu2(ri, rj ; t) are

fluctuations of the correlations. δU(t) is obtained by

minimizing the action S =
∫
dt
〈

Ψ(t)
∣∣∣H − ih̄ ∂

∂t

∣∣∣Ψ(t)
〉

,

and linearizing the resulting Euler-Lagrange equations.
Assuming a perturbing external potential Uperte

−iωt, we
obtain the density-density response operator χ from its
definition χ−1(ω)δρ = Upert, where δρ is the density fluc-
tuation induced by Upert. In CBF-BW, χ(ω) is given by
χ(ω) = G(ω) +G(−ω), where G(ω) in coordinate repre-
sentation is given by

G(z, z′, r‖;ω) =
√
ρ(z)ρ(z′)

∑
m,n

∫
d2k (2)

φm,k(z)[εn(k) + Σmn(k, ω)− h̄ω − iη]−1φ∗n,k(z′)eikr‖

φm,k(z)ei(kxx+kyy) are the Feynman excitation functions
for parallel wave vector k and perpendicular quantum
number m, and εm(k) is the excitation energy in Bijl-
Feynman approximation. The dynamic pair correlations
δu2 (absent in the Bijl-Feynman approximation) give rise
to the complex self energy Σmn(k, ω) [20]. CBF-BW is
the minimal variational theory of many-body excitations
that describes excitation energies and damping qualita-
tively correctly for strongly correlated systems like 4He.

The dynamic structure function is obtained from the
fluctuation-dissipation theorem S(ω) = −=mχ(ω)/π.
Of particular interest are plane wave perturbations
with wave vector k, which correspond to Bragg
spectroscopy measurements (or inelastic neutron scat-
tering cross sections). The resulting S(k, ω) =∫
d3rd3r′e−ik(r−r′)S(z, z′, r‖, ω) is the dissipation cross

section for transferring momentum k and energy h̄ω to
the system. Thus S(k, ω) has a peak whenever h̄ω coin-
cides with an excitation energy, and homogeneous broad-
ening of S(k, ω) indicates decay of excitations.

We have calculated ground state and excited states for
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FIG. 1. (Color online) Density profile ρ(z) (top panel) and
out-of-plane pair distribution G⊥(z) (middle panel) for sev-
eral trap frequency Ω (z is scaled by the oscillator length). As
the pronounced correlation peak for the Ω = 3.16 decreases
with increasing Ω, a small correlation peak appears in the
in-plane pair distribution G‖(r‖) (bottom panel). The loca-
tion of the potential minimum for two particles is indicated
by filled circles.

σ = 0.3 and area density n = 2 and varied the trap
frequency Ω. For a system of fermionic KRb molecules
[9] these values correspond to the physical parameters
σ = 0.18µm, n = 5.32µm−2 and the unit value of
the trapping frequency Ω0 = 1.33 kHz. For the mag-
netic dipoles of Er2 [23] these values correspond to σ =
25.4 nm, n = 278µm−2 and Ω0 = 26.3 kHz. Thus, our
results are in a parameter regime that is somewhat out-
side the typical experimental regime. By varying the trap
frequency Ω we drastically change the properties of the
system. A small value of Ω leads to a wide density pro-
file ρ(z) (shown in the top panel of Fig. 1) with a high
probability for head-to-tail configurations, where pairs of
particles are located in the attractive well of the dipo-
lar interaction. Increasing Ω decreases this probability,
until eventually the DBG becomes two-dimensional. The
smallest value of Ω that we achieved was Ω = 3.16, below
which the numerical solution of the HNC-EL equations
became unstable, as discussed below.

The effect of the trap frequency on the pair distribu-
tion g(z, z′, r‖) is shown in Fig. 1. In the middle panel,
g(z, z′, r‖) is plotted for z = −z′ and r‖ = 0 as function
of z. G⊥(z) ≡ g(z,−z, 0) is a measure of out-of-plane
pair correlations. With decreasing Ω, a correlation peak
is growing in G⊥(z), shifted from the classical potential
minimum for two particles (indicated by a filled circle)
by zero-point motion. Indeed, at Ω = 3.16, G⊥(z) is el-
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FIG. 2. S(k, ω) for the trap frequency increasing from Ω =
3.16 (top left) to Ω = 224 (bottom right). Undamped modes
are shown by lines and the dotted lines are the excitation
energies in Bijl-Feynman approximation. Roton excitations
appear both in the weak and in the strong trapping limit.

evated above unity for all values of z, which means that
particles tend to cluster up atop each other. This cluster-
ing effect is of course not manifested in the translationally
invariant one-body density ρ(z) but only in the pair dis-
tribution function. G⊥(z) even has a second correlation
peak at a much larger z value, but ρ(z) is almost zero
there, see top panel. It is this clustering in head-to-tail
configurations that brings the DBG closer to instability,
as we will see in the excitation spectrum. The lower
panel of Fig. 1 shows G‖(r‖) ≡ g(0, 0, r‖), a measure of
in-plane pair correlations. Variation of Ω reveals a trend
for G‖(r) opposite to G⊥(z): increasing Ω (i.e. making
the system more two-dimensional) increases in-plane cor-
relations. Confining the dipoles to two dimensions shields
them from the attractive part of the dipole-dipole inter-
action. Hence the correlation peak inG‖(r‖) for large Ω is
due to the repulsive part of the dipole-dipole interaction
(and to a smaller degree due to the (σ/r)12 repulsion). A
comparison between Monte Carlo results [13] and G‖(r‖)

in the two–dimensional limit can be found in [18], where
it is shown that for the low area densities used here the
HNC-EL method gives very accurate results.

In Fig. 2 we show the main result of this work, the dy-
namic structure function S(k, ω) for a wave vector paral-
lel to the layer (k = k‖, k⊥ = 0). Wave numbers and fre-

quencies are given in units of the trap length, a−1
ho =

√
Ω

in our units, and the trap frequency Ω, respectively. The
Bijl-Feynman approximation εn(k) is shown by dotted
lines. The six panels correspond to the different values
of the trap frequency used also in the ground state cal-
culations above (again we choose σ = 0.3 and n = 2).
S(k‖, ω) is shown as a grayscale map where it has finite
values (damped modes). To enhance low intensity re-
gions, the scale is mapped to S(k‖, ω)1/4. Undamped
modes lead to δ-like contributions and cannot be dis-
played in this fashion. Therefore undamped modes are
traced by lines in Fig. 2. Since the layer is translation-
ally invariant, parallel momentum is conserved and k‖ is
a good quantum number. S(k‖, ω) probes the dispersion
relation of excitations characterized by a wave vector k‖.
The strongest signal comes from the excitations with the
lowest perpendicular quantum number, h̄ω0(k‖).

Close to instability, at Ω = 3.16, the lowest mode ex-
hibits a roton, i.e. a local minimum in the dispersion
relation ω0(k‖) (full line), at a wave number k‖ ≈ a−1

ho .
Due to the negative curvature of the dispersion for low k‖
the phonon and roton excitations are not damped. When
we increase k‖ beyond a−1

ho , ω0(k‖) bends over to form a
plateau at twice the roton energy Er, and the undamped
mode loses spectral weight (not visible in Fig. 2, since
we refrained from artificial broadening). This effect is
well-known for superfluid 4He. It is caused by the high
density of states at Er, leading to a high probability for
immediate decay into two rotons, when this decay chan-
nel opens at h̄ω = 2Er. Beyond a−1

ho , more and more
spectral weight is carried by a damped, free particle-like
excitation at energies above 2Er. We note that ε0(k) pre-
dicts a value for Er very similar to CBF-BW. Thus the
system is far less correlated than 4He where CBF-BW is a
significant correction to the Bijl-Feynman approximation
for the roton energy.

The appearance of such a roton in dipole layers was
predicted already in the mean field approximation [16, 17]
and later in the Bijl-Feynman approximation [18]. The
mean field calculations have shown that upon further de-
creasing Ω, the roton energy Er can drop to zero trig-
gering a dynamical instability driven by a perturbations
with finite momentum and caused by the dipole-dipole
attraction. Unlike the mean field approach, HNC-EL
calculations show signs of this instability already in the
ground state calculation. Indeed, numerical solution of
the HNC-EL equations is exceedingly difficult for smaller
Ω, smaller σ, or higher area density n. As explained
in [18], this is an indication that the Jastrow-Feenberg
ansatz Φ0 leads only to a metastable solution even if
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FIG. 3. S(k, ω) for trap frequency Ω = 707 (left panel) and
the 2D limit Ω = ∞ (middle panel), with area density n = 2.
The 2D limit for n = 4 is shown in the right panel.

Er > 0. The true ground state would lie energetically
lower than Φ0. The correlation peak in G⊥(z) suggests
a dimerized phase, where pairs of dipoles are bound [18].
Whether such a phase exists would have to be answered
using either a different ansatz for Φ0 or a method that
does not require a variational ansatz.

Tightening the trap by increasing Ω enhances stability
and suppresses the roton and the associated two-roton
plateau. ω0(k‖) becomes markedly more straight for e.g.
Ω = 22.4, but the curvature ω′′0 (k‖) still changes sign
as k‖ grows. Hence, as for Ω = 3.16, also for higher
Ω low excitations are undamped for small k‖ and be-
come damped when decay into two lower energy modes
becomes kinematically possible. For k‖aho > 2.4, decay
into perpendicularly excited modes leads to additional
broadening. Upon increasing Ω further towards the two-
dimensional limit, we observe a reappearance of a roton
mode, albeit not at k‖ ≈ a−1

ho . Between Ω = 22.4 and
Ω = 54.8 the bend in h̄ω0(k‖) increases, and at Ω = 224
(bottom right panel of Fig. 2) the dispersion becomes al-
most flat at k‖aho ≈ 0.4. Towards the two-dimensional
limit, the DBG becomes more correlated, as seen in the
growth of a small peak in the in-plane correlation, see
G‖(r‖) in Fig. 1.

We have calculated the dynamic structure function
also in the 2D limit, S2D(k, ω), using precisely the same
approximations as for the DBG layer for Ω = 224. We
confirmed that S(k‖, ω) is very similar to the 2D limit
S2D(k, ω), and becomes indistinguishable for Ω = 707. In
the left and middle panel of Fig. 3, we show S(k‖, ω) for
Ω = 707 and S2D(k, ω), respectively, as function of k/

√
n

and h̄ω/n, which is the more appropriate scaling for a
2D system of density n. The small difference between
S(k‖, ω) and S2D(k, ω) is due to including triplets and ele-
mentary diagrams in the 2D HNC-EL calculations, which
demonstrates that they are indeed of minor importance
at n = 2. In the right panel, S2D(k, ω) is shown at twice
the density, n = 4. This increases the correlations further
and leads to a roton minimum. This is the “traditional”
roton, as it is also found in 4He films, that results from

the short range order caused by repulsive interactions and
can be interpreted as a signature of a system close to so-
lidification (but Er does not vanish at solidification [15]).
The roton wave number is approximately kr ≈ 6n1/2, the
same value found in [15] for σ = 0.

In conclusion, we have demonstrated a roton-roton
crossover between two regimes of a DBG layer: (i) in the
weak trapping regime, the system is close to an instabil-
ity due to the head-to-tail attraction of the dipole-dipole
interaction. Using HNC-EL, we calculated the pair dis-
tribution function which shows a strong out-of-plane cor-
relation in the weak trapping regime. We obtained the
excitation energies from the dynamic structure function
in CBF-BW approximation. The head-to-tail attraction
of dipoles leads to a roton minimum at wave number
k‖ = a−1

ho in the lowest collective mode, which is a pre-
cursor to dynamical instability and has been found pre-
viously by more approximate methods [16–18]. The out-
of-plane correlation peak and the associated roton vanish
upon increasing the trapping strength. (ii) In the strong
trapping regime the system becomes two-dimensional.
We find increased in-plane correlations in the pair dis-
tribution function, caused by the side-by-side repulsion
of dipoles. In this regime, it is this repulsion and the cor-
responding short-range order in the layer plane that gives
rise to a roton at a wave number of about k‖ = 6n1/2.
Thus by tuning the confinement strength, the anisotropy
of the dipole-dipole interaction allows to explore two
kinds of rotons with different physical origin: an “at-
tractive” roton close to the border to instability and the
traditional “repulsive” roton.
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