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Abstract

We present a mean field analysis of the effects of molecular rotation on the excitation spectrum

and stability of ultracold dipolar gases. For an unpolarized homogeneous gas interacting with

a pure dipole-dipole interaction, we find that for the rotational state L = 1 the dipole-dipole

interaction causes a splitting of the translation-rotation energy levels into a single M = 0 and a

doubly degenerate M = ±1 excitation. For all other rotational states, the dipole-dipole interaction

does not lead to coupling of translations and rotations and therefore has no effect on the rotational

degeneracy of the excitations. The addition of arbitrarily small electric fields is found to introduce

instabilities similar to those known to arise in the fully polarized dipolar gas. As in the case of a

fully polarized gas, addition of a large enough short range repulsive potential is seen to stabilize

the system, with the critical value of the repulsive interaction required for stabilization being larger

when rotations are included.
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I. INTRODUCTION

Ultracold dipolar gases constitute a rapidly expanding area of study in cold quantum

gases. These systems possess anisotropic long ranged interactions that can have significant

effects on the properties of degenerate quantum gases. Initial interest focused on atomic

ensembles of atoms possessing magnetic moments1–4. However with much recent experimen-

tal progress in both formation of and cooling of dipolar molecules5–13, attention has focused

on investigating the properties of the more strongly interacting dipolar molecule ensem-

bles. The molecular constituents bring additional interesting complexities to the behavior

of cold gaseous ensembles, by virtue of their internal rotational and vibrational degrees of

freedom that are absent in atomic systems. In particular, the presence of rotational degrees

of freedom introduces fascinating questions of the interplay between rotation and transla-

tional motion in the quantum degenerate regime. Despite this strong motivation however,

theoretical studies of trapped dipolar molecules have been to date mostly restricted to anal-

ysis of fully polarized systems in the presence of strong external fields, i.e., taking into

account only translational degrees of freedom. For such polarized molecular systems, con-

siderable theoretical effort has been devoted to developing an understanding both of the

states of ultracold ensembles trapped in harmonic potentials14–22 and of the phases of self-

assembled aggregates23,24. The former studies of trapped dipolar gases have revealed the

effects of the long range anisotropic dipolar interaction on the stability, spatial structure

and excitations16,17,21,22,25,26 of trapped Bose condensates, predicting interesting phenomena

such as formation of bi-concave molecular ensembles21 and excitation spectra possessing

roton-like minima that signal the onset of instabilities at finite wave numbers16,17,26. In

optical lattices, polar molecules are predicted to exhibit a rich variety of phases, including

a supersolid phase27,28.

In this work we investigate the effect of molecular rotational degrees of freedom on a

homogeneous Bose gas of dipolar molecules (dipolar molecular Bose gas, DMBG) within

a mean field analysis in which translational and rotational degrees of freedom are treated

on the same footing. This represents the first step in a systematic program of study of

how the rotational kinetic energy influences the properties of ultracold dipolar molecules

and constitutes a useful reference point for further work with more advanced theoretical ap-

proaches such as Quantum Monte Carlo or quantum many-body methods. After introducing
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the mean field formulation we first briefly recall the mean field analysis of a fully polarized

gas of aligned dipoles, for which compressional excitations perpendicular to the molecular

orientation are known to lead to instability15. We then characterize the excitation spectrum

and stability of an unpolarized gas of dipolar molecules as a function of the density, finding

that in contrast to the polarized situation, the unpolarized gas is found to be stable for all

excitations along all directions and furthermore displays a free rotor spectrum for all except

the L = 1 molecular rotational states which is split due to the dipolar interaction. We

then develop the mean field solutions for excitation energies in the presence of a partially

polarizing electric field. This analysis shows that, within a mean field analysis, while an

unpolarized DMBG is stable with respect to excitations, the presence of an arbitrarily small

electric field gives rise to instabilities similar to those of the fully polarized system, implying

that the rotational kinetic energy does not stabilize the system for all wavevectors. This

result raises interesting questions for further study beyond mean field.

II. MEAN FIELD APPROACH TO DIPOLAR MOLECULAR BOSE GAS

In the mean field approximation, the many-body Schrödinger equation for the ground

state of a Bose gas is approximated by the non-linear Gross-Pitaevskii (GP) equation in

which the particle-particle interaction is replaced by an effective “averaged” interaction29–32.

We consider here a homogeneous gas of dipolar molecules that are free to translate and

rotate in three dimensions. The long range interactions of such a gas are given by pairwise

dipole-dipole interactions of the form

V (r1 − r2,Ω1,Ω2) =
d2

4πǫ0

Ω1 · Ω2 − 3(Ω1 · r̂)(Ω2 · r̂)
r3

, (1)

where ri is the position of dipole i (corresponding to the center of mass of the i-th molecule),

Ωi is the unit vector defining the orientation of the dipole, i.e., of the molecular orientation,

r = r1−r2, and d is the bare dipole moment. In this work, we take the effects of short range

intermolecular interactions into account by addition of a contact pseudo-potential gδ(r).

For atomic Bose gases, there is a simple relation between g and the s-wave scattering length

a, g = 4π~2a/m, where a is determined by both the short range part of the interaction

and the dipole moment33,34. In the present case of molecule with rotational degrees of

freedom, little is known about the appropriate pseudo-potentials. In the strong field limit

3



of fully polarized dipoles, Derevianko has derived velocity dependent anisotropic pseudo-

potentials34. Close coupling calculations carried out in this regime have also shown that the

low energy scattering is relatively insensitive to the short range interaction35,36. However, to

our knowledge no attempt has been made to construct pseudo-potentials for interactions of

molecules possessing only partial rotational polarization. We adopt the simplest, isotropic

form here since the focus of this study is to characterize the generic effects of various, possibly

competing potential energy features on the excitation energies rather than to make accurate

calculations for specific systems. In particular, we seek to investigate the consequences of

competition between long range dipolar interaction, short range repulsion, and the effect

of rotational kinetic energy, as the electric field varies over a wide range of values. We

shall therefore employ the simple delta function form gδ(r), treating g as a positive valued

parameter that adjusts the strength of the short range repulsion. More realistic forms of

short range interaction potentials could be produced for specific systems by performing close

coupling calculations, which is beyond the scope of the present work.

The GP equation that we shall solve for a DMBG possessing both translational and

rotational degrees of freedom and characterized by mass m (λ = ~2

2m
), rotational constant B

and bare dipole moment d, is then given by

µΨ(r1,Ω1) =− λ∇2Ψ(r1,Ω1) + BL̂2Ψ(r1,Ω1) + Vext(r1,Ω1)Ψ(r1,Ω1)

+g

∫

dΩ2|Ψ(r1,Ω2)|2Ψ(r1,Ω1) + U(r1,Ω1)Ψ(r1,Ω1). (2)

Here U(r1,Ω1) is the mean interaction that each molecule sees as a result of its dipole

interactions with the other molecules and is given by

U(r1,Ω1) ≡
∫

d3r2dΩ2V (r1 − r2,Ω1,Ω2) |Ψ(r2,Ω2)|2. (3)

As pointed out by Lahaye et al.37, it is not necessarily justified to set up a GP equation

containing a real potential and a pseudopotential on equal footing. However, as noted above,

we regard the particular short range term used here merely as a placemarker that provides

a non-zero repulsive short range interaction, and do not attempt to justify its detailed form.

The general issue of developing a consistent representation of both short and long range

interactions for unpolarized dipolar gases is best addressed in the context of future studies

for specific systems.
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Solving the GP equation eq. (2) yields the effective single-molecule wavefunction Ψ =

Ψ0(r,Ω) (sometimes referred to as the “macroscopic wave function”) and the chemical po-

tential µ. Numerical solution of eq. (2) typically involves propagation of an initial trial form

for Ψ in imaginary time, thus evolving to the ground state of this non-linear Schrödinger

equation. The spatial integration of the convolution product in the last term may be avoided

by Fourier transforming this and making use of the Fourier transforms of |Ψ(r2,Ω2)|2 and V

(see eq. (A2)). However, in the homogeneous case that is of interest here, solving eq. (2) for

the ground state becomes trivial, as we explain below. In the mean field approach, excitation

energies are then estimated by linearizing the GP equation, leading to Bogoliubov-deGennes

(BdG) equations. We shall see below that the incorporation of molecular rotation in eq. (2)

increases the complexity of the resulting linearized equations. The major result of this work

is thus the derivation of the linearized GP equations with rotation and solving the associated

eigenvalue problems.

Under the influence of a finite external electric field (assumed to be parallel to the z-

direction), dipolar molecules will possess a non-zero dipole moment with an average orien-

tation parallel to the direction of the external field. The commonly used approximation for

this situation is to neglect the rotational kinetic energy of dipolar molecules and to treat the

system as a fully aligned dipolar Bose gas of particles without rotational degrees of freedom,

with the dipoles held fixed in the field direction, Ω = ez. In this approximation, the bare

dipole moment d would overestimate the strength of the dipole-dipole interaction. Instead,

one typically uses the value of the average dipole moment of the molecule in the exter-

nal field, 〈d〉, which is always smaller than d because of the non-zero angular distribution

of a molecule in a finite field (the resulting states are often referred to as ”pendular’38).

The resulting BdG equations for a homogeneous, fixed orientation dipolar gas lead to the

Bogoliubov spectrum15,39,40

ǫ(k) =
[

(λk2)2 + 2λk2ρ
(

g +
4π

3
〈d〉2(3 cos2 θk − 1)

)]1/2

(4)

where the Fourier transformation of the dipole-dipole interaction in the fully aligned geom-

etry, Vk = 4π
3

d2

4πǫ0
(3 cos2 θk − 1), eq. (A3), has been used. This leads to the well known result

that, in the absence of a repulsive contact interaction, a homogeneous and fully aligned

dipolar gas is unstable even for an arbitrarily small external field, since eq. (4) predicts

that for g = 0 the excitation energy will be imaginary for sufficiently small wave vector k
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perpendicular to the external field15. Only for g > 4π
3
〈d〉2, will ǫ(k) be real for all k and

the homogeneous system be stable. The situation is more complicated for inhomogeneous

fully polarized dipolar gases in a trap, where the excitation energies can no longer be deter-

mined analytically, but need to be obtained numerically. It is known both from experiment3

and from mean field calculations21 that confinement in the direction of polarization has a

stabilizing effect.

In the remainder of this paper we shall investigate how this instability of the polarized

DMBG is affected by the rotational kinetic energy of the molecules in both unpolarized and

partially polarized DMBGs. Following earlier practice in discussions of rotational motion of

molecules in the presence of anisotropic interactions with other species or an environment,

we shall refer to the rotational motion of the interacting molecules in the ground state as

rotational zero-point motion of the molecules41.

III. UNPOLARIZED BOSE GAS

In the homogeneous limit, we set the external potential Vext to zero. For a homogenous

system, without loss of generality, we may assume a normalized, spatially homogeneous

ground state solution Ψ0(r,Ω; t) =
√

ρ
4π
e−iµt/~. We immediately see that the chemical

potential µ is solely determined by the short range interaction, since the average dipole

mean field potential vanishes in this homogeneous limit. When the short range interaction is

approximated by the isotropic contact interaction as above, we obtain the chemical potential

µ = ρg.

The excitation spectrum is obtained by linearizing the time-dependent GP equation (2),

assuming small fluctuations around the ground state Ψ0
40,

Ψ(r,Ω; t) = Ψ0(r,Ω) + δΨ(r,Ω; t). (5)

We now generalize the classic Bogoliubov analysis of a homogeneous Bose gas of point

particles39 to molecules possessing rotational degrees of freedom Ω. From translational

invariance, we know that the spatial dependence of δΨ(r,Ω; t) can be written as plane wave

fluctuations

δΨ(r,Ω; t) = e−iµt/~[uk(Ω)e
ikre−iωt/~ − vk(Ω)e

−ikreiωt/~] (6)
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Linearization of the dipole mean field (3) leads to

U(r1)Ψ(r,Ω; t) =
ρ

4π

∫

d3r2dΩ2V (|r1 − r2|,Ω1,Ω2) (δΨ(r2,Ω2) + δΨ∗(r2,Ω2))

After also linearizing the mean field term of the contact interaction g
∫

dΩ2|Ψ(r1,Ω2)|2Ψ(r1,Ω1),

we insert the plane wave ansatz, eq. (6). This allows the BdG equations to be derived with

use of the Fourier transform of the orientation dependent dipole-dipole potential Vk(Ω1,Ω2),

resulting in equations for the plane wave fluctuations uk(Ω) and v∗
k
(Ω). We expand uk and

v∗
k
in spherical harmonics

uk(Ω) ≡
∑

L,M

uLMYLM(Ω) , v∗
k
(Ω) ≡

∑

L,M

v∗LMYLM(Ω). (7)

omitting the index k for brevity, and thereby obtain the BdG equations for uLM and v∗LM :

ωuLM = λk2uLM + BL(L+ 1)uLM (8a)

+
ρ

4π

∫

dΩ1dΩ2YLM(Ω1)Vk(Ω1,Ω2)(uk(Ω2)− v∗
k
(Ω2)) + ρgδL,0δM,0(u00 − v∗00)

ωv∗LM = −λk2v∗LM −BL(L+ 1)v∗LM (8b)

− ρ

4π

∫

dΩ1dΩ2YLM(Ω1)V
∗

k
(Ω1,Ω2)(v

∗

k
(Ω2)− uk(Ω2)) + ρgδL,0δM,0(v

∗

00 − u00).

It is immediately apparent that the BdG equations do not couple states of different

angular momentum L. Furthermore, the full orientation dependent dipole-dipole potential

Vk(Ω1,Ω2) contains only L = 1 components of the molecular orientations, eq. (A2). This

implies that the mean field dipolar interaction in eqns. (8a) and (8b) vanishes for all angular

momentum quantum numbers except L = 1, i.e., within the mean field approximation, the

dipole-dipole interaction has no effect on molecular states with L 6= 1. Eqns. (8a) and

(8b) also show that the short-range repulsion g only affects the rotational ground state,

L = 0, and that the energies of all other rotational states L > 0 are independent of the

short range repulsion when this is described by an isotropic pseudopotential. For the L = 0

state we then recover the well-known Bogoliubov spectrum of a homogeneous Bose gas,

ω0 =
√

(λk2)2 + 2λk2ρg, while for L ≥ 2, the spectrum of a freely rotating and translating

molecule is obtained.

We now analyze the case of greatest interest, L = 1, where the dipole-dipole interaction

induces a non-zero mean field coupling between molecular rotational states. For L = 1, the
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BdG equations are

ωu1M = λk2u1M + 2Bu1M + ρ
d2

4πǫ0

(4π)2

9

∑

m′m

Y2m′(Ωk)

[

2

m′

1

M

1

−m

]

(u1m − v∗1m)

ωv∗1M = −λk2v∗1M − 2Bv∗1M − ρ
d2

4πǫ0

(4π)2

9

∑

m′m

Y2m′(Ωk)

[

2

m′

1

M

1

−m

]

(v∗1m − u1m),

Solving this 6-dimensional eigenvalue problem becomes trivial if we note that without an

external field the system is isotropic. Then we can choose k to be parallel to the z axis and

since Y2m′(ê1) =
√

5
4π
δm′,0, we obtain

ωu1M = λk2u1M + 2Bu1M + ρ
d2

4πǫ0

(4π)2

9

√

5

4π

[

2

0

1

M

1

−M

]

(u1M − v∗1M)

ωv∗1M = −λk2v∗1M − 2Bv∗1M − ρ
d2

4πǫ0

(4π)2

9

√

5

4π

[

2

0

1

M

1

−M

]

(v∗1M − u1M).

These equations are both diagonal in M , indicating that the angular momentum projection

on any selected axis z is a good quantum number and allowing the secular equation to be

solved for each M separately. This results in two distinct eigenvalues, one for M = 0, and

a doubly degenerate eigenvalue for M = ±1:

ω10 =

√

(λk2 + 2B)2 + 2πρ(λk2 + 2B)
8

9

d2

4πǫ0
(9a)

ω1,±1 =

√

(λk2 + 2B)2 − πρ(λk2 + 2B)
8

9

d2

4πǫ0
. (9b)

This mean field analysis of our model eq.(2) thus predicts that for the unpolarized homo-

geneous DMBG, the dipole-dipole interaction couples the translational degrees of freedom

and the rotational degree of freedom for the molecular rotational states L = 1 but does not

affect any other rotational states. We find that the 3-fold M degeneracy of the L = 1 state

of a linear rotor is lifted and the states split into a lower doubly degenerate level and an up-

per non-degenerate level. While ω10 is strictly real, we see that, in principle, the excitation

energy ω1,±1 could become imaginary, corresponding to an instability. However, it is easy

to verify that this does not happen for realistic values of B and ρd2 of naturally occurring

dipolar molecules. For example for a density of ρ = 1014cm−3 and a relatively large dipole

moment of 5 Debye, the rotational constant B of the molecule would have to be smaller than

35µcm−1 which is much smaller than the B values of diatomic molecules. We stress that the
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dispersion relation depends on the short range interaction only for L = 0 (see above), and

hence eqns. (9a) and (9b) are independent of g.

For purely rotational modes, i.e., for k = 0, expanding the eigenvalues to linear order in

ρd2

B
yields the rotational excitation energies

ω10 = 2B
(

1 +
2

9

ρ d2

2Bǫ0

)

ω1,±1 = 2B
(

1− 1

9

ρ d2

2Bǫ0

)

,

which show that the rotational degeneracy of the L = 1 state of an isolated molecule is split

by the dipole-dipole interaction between the molecules of a DMBG. For k = 0, the energy

splitting is ∆ = ρ d2

3ǫ0
, which is independent of the molecular rotation constant B but depends

linearly on the density. In order to give an example of the possible magnitude of the pure

rotational splitting, we assume a density of ρ = 1014cm−3 and a dipole moment of 5 Debye.

This yields an energy splitting ∆ = 5.3 × 10−5cm−1=1.6MHz, i.e., in the radio frequency

range. We note that if such a splitting could be measured, it would provide a local probe of

the density ρ, when the molecular dipole moment d is known.

The linear dependence of the line splitting ∆ on density and the strength of the dipole-

dipole interaction d2 is reminiscent of the broadening of microwave or magnetic resonance

spectra due to electric or magnetic dipole interactions. The dipolar broadening of magnetic

resonance spectra in crystals, i.e. for spins on a lattice, is known to result in a linear

dependence of the line width on ρ and d2 44 and a similar dependence is seen in rotational

resonance broadened microwave spectra of linear dipolar molecules42,43. Our mean field

analysis of the DMBG results in a line splitting for a given k value. At this time we cannot

rule out the possibility that additional broadening of the L = 0 → 1 transition of a DMBG

might be predicted by a more accurate theory.

IV. PARTIALLY POLARIZED BOSE GAS

We now derive the BdG equations for the excitations of a homogeneous DMBG with

both translational and rotational degrees of freedom, in a finite valued external electric field

that is too weak to fully align the dipoles. Numerical solutions of these equations will show

that in the mean field treatment, an arbitrarily small external alignment field destabilizes

a homogeneous DMBG when it interacts only via the long range dipole-dipole interaction
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and there is no short range repulsion, i.e., when g = 0, but that it can be stabilized by

the presence of a large enough finite value of g. Furthermore, we will see that neglecting

the rotational degrees of freedom and using the average dipole moment 〈d〉 in the fully

polarized approximation eq. (4) is a good approximation for typical dipole moments and

densities: only for large values of ρd2/B do the deviations of this approximation from the

full treatment become significant.

The one-body Hamiltonian for a single rotating and translating electric dipole in a con-

stant external field E pointed in the z-direction is given by

H0 = −λ∇2 + BL̂2 + εY10(Ω), (10)

where ε = −|E|d. The GP equation for a homogeneous system of such dipoles is obtained

by adding the mean fields of the contact interaction and of the dipole-dipole interaction,

leading to eq. (2) with Vext(r,Ω) ≡ εY10(Ω). In the homogeneous limit, the ground state wave

function Ψ0 does not depend on r. However, unlike the previous situation for unpolarized

dipoles, under the influence of the external field Vext, Ψ0 now depends on the molecular

orientation Ω. Note that just as in the absence of an electric field, the average dipole-dipole

interaction vanishes, despite the presence of the field:

U =

∫

dΩ2|Ψ0(Ω2)|2
∫

drr2dΩr V (r,Ω1,Ω2) = 0 (11)

This follows from the substitution of the expansion (A1) for the potential V . Thus the

dipole-dipole interaction vanishes in the mean field approximation, even if the ground state

Ψ0(Ω) is anisotropic because of the external field. We note that this is a consequence of the

homogeneity of the DMBG considered here and will not be the case for a DMBG in a trap.

The mean field of the short range contact interaction is just a constant, ρg, which follows from

eq. (2) and the normalization of Ψ0(Ω),
∫

dΩ|Ψ0(Ω)|2 = ρ. Consequently, the GP ground

state Ψ0(Ω) that results from solution of the 1-body equation H0Ψ(Ω) = (µ − ρg)Ψ(Ω) is

equivalent to the single-molecule wave function in the external field with ground state energy

E0 = µ − ρg. Since we define the z-direction to be the direction of the external electrical

field, Ψ0(Ω) does not depend on the azimuthal angle φ, but only on the polar angle θ. The

equation H0Ψ = (µ− ρg)Ψ can readily be solved by expanding Ψ in spherical harmonics

Ψ0(Ω) =
√
ρ
∑

ℓ

aℓYℓ0(cos θ), (12)
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yielding a discrete eigenvalue problem with lowest eigenvalue E0 and corresponding eigen-

vector {aℓ}. The chemical potential µ is then simply the sum of E0 and the contribution ρg

deriving from the short range repulsion. Without loss of generality, the ground state wave

function Ψ0(Ω) can be assumed to be real.

As before, the BdG equations for a partially polarized DMBG are obtained by linearizing

the GP equation, eq. (2), and inserting Ψ0(Ω), eq. (12), as the ground state in the ansatz

eqns. (5) and (6). Using again the fact that the averaged dipole-dipole interaction vanishes,

the linearized mean field interaction then becomes

U(r1)Ψ(r1,Ω1; t) =

∫

d3r2dΩ2V (|r1 − r2|,Ω1,Ω2) Ψ0(Ω1)Ψ0(Ω2) [δΨ(r2,Ω2) + c.c.] + O(δΨ2),

which results in the coupled BdG equations

ωuk(Ω1) = (λk2 − E0)uk(Ω1) +BL̂2uk(Ω1) + εY10(Ω1)uk(Ω1)

+ Ψ0(Ω1)

∫

dΩ2Vk(Ω1,Ω2) Ψ0(Ω2)(uk(Ω2)− v∗
k
(Ω2))

+ gΨ0(Ω1)

∫

dΩ2Ψ0(Ω2)(uk(Ω2)− v∗
k
(Ω2))

ωv∗
k
(Ω1) =− (λk2 − E0)v

∗

k
(Ω1)− BL̂2v∗

k
(Ω1)− εY10(Ω1)v

∗

k
(Ω1)

−Ψ0(Ω1)

∫

dΩ2V
∗

k
(Ω1,Ω2) Ψ0(Ω2)(v

∗

k
(Ω2)− uk(Ω2))

− gΨ0(Ω1)

∫

dΩ2Ψ0(Ω2)(v
∗

k
(Ω2)− uk(Ω2)).

Just as we did for the BdG equations of the unpolarized DMBG, we expand u and v∗ in

spherical harmonics, eq. (7). Using the expansion eq. (12) of Ψ0(Ω) and the expansion (A2)

of the dipole-dipole potential allows us then to cast the BdG equations into a form convenient

for calculations, namely

ωuLM = (λk2 − E0)uLM + BL(L+ 1)uLM + ε
∑

L′

[

L

−M

1

0

L′

M

]

uL′M

+ ρ
∑

L′,M ′

V L′M ′

LM (uL′M ′ − v∗L′M ′) + ρgδM.0

∑

L′

aLaL′(uL′0 − v∗L′0) (13a)

ωv∗LM =− (λk2 − E0)v
∗

LM −BL(L+ 1)v∗LM − ε
∑

L′

[

L

−M

1

0

L′

M

]

v∗L′M

− ρ
∑

L′,M ′

V L′M ′

LM (v∗L′M ′ − uL′M ′)− ρgδM.0

∑

L′

aLaL′(v∗L′0 − uL′0), (13b)
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with

V L′M ′

LM =
d2

4πǫ0

(4π)3

9

∑

ℓ=L±1

ℓ′=L′±1

aℓaℓ′

[

L

−M

ℓ

0

1

M

] [

1

−M ′

ℓ′

0

L′

M ′

] [

2

m′

1

M

1

−M ′

]

m′=M ′−M

Y2,M ′−M(Ωk).

(14)

Inspection of these equations shows that the dipole-dipole interaction, the short range re-

pulsion, and the external field all act to couple the molecular rotation states, but the latter

two couple only the rotational quantum numbers L and do not couple different M states.

A more general anisotropic pseudo-potential at short range could of course introduce addi-

tional rotation coupling. The dipolar coupling matrix elements are seen to be controlled by

the density and the square of the dipole moment. We therefore define a “dipolar coupling”

parameter cd as the ratio between the prefactor of the dipolar matrix elements and the

rotational constant B, specifically, cd =
ρd2

4πǫ0B
.

From eq. (14) for V L′M ′

LM we see that V L′M ′

LM = 0 whenever |M | > 1 or |M ′| > 1, regardless

of the value of L. Thus the molecular translations and rotations are coupled by the dipole-

dipole interaction only for M ∈ {−1, 0, 1}. From a numerical point of view, this significantly

reduces the size of the matrix to be diagonalized to solve the eigenvalue problem. We shall

refer to the mixed rotational and translational excitations ωlm(k) as rotation-phonon modes.

A. Results for g = 0

We first examine the excitations when the short range interaction is absent, i.e., when

g = 0 and only the long range dipole-dipole interaction is present.

Fig. 1 shows the energy ω1(k) of the lowest modes, in units of the rotational constant B.

In the absence of dipole-dipole coupling, ω1(k) would correspond to the L = 0 rotational

state for a given k. In Fig. 1, ω1(k) is plotted as function of the reduced wave number

k/k0, where k0 =
√

2mB/~2, for two directions of k, namely parallel and perpendicular

to the polarization direction. The lower dispersion curve shows the parallel and the upper

dispersion curve the perpendicular mode. In these calculations the field strength ε/B was

set to 0.05, resulting in a weak polarization for which the field-averaged single molecule

dipole moment 〈d〉 amounts to only 0.0081, i.e. 0.81% of the bare dipole moment value.

The strength of the dipolar coupling cd was then increased from 10−6 to 10−1, in steps of

factors of 10. We also plot for comparison the energy dispersion for aligned dipoles without
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FIG. 1. Energy spectrum ω1(k) of a homogeneous Bose gas of rotating dipoles in a weak electric

field, evaluated for dipolar coupling strengths cd = ρd2/4πǫ0B = 10−6, 10−5, . . . 10−1, in a field

of strength ε/B = 0.05 and no short range repulsion (g = 0). For each value of cd, we show

two curves, a lower and a higher dispersion branch which correspond to a wave vector k oriented

perpendicular and parallel to the polarization (z) direction, respectively. For all coupling values,

the perpendicular mode becomes imaginary below some finite wave number, thus destabilizing the

system. The dotted lines show as reference the spectra of non-rotating dipoles polarized in the

z-direction with an average dipole moment 〈d〉, also in the absence of short range interactions (see

eq. (4)).

rotational degrees of freedom, ǫ(k), using 〈d〉 as the value of the dipole moment in eq.(4).

We see that on the scale shown here the excitations ω1(k) and ǫ(k) are indistinguishable

for dipolar coupling strengths up to cd = 10−2. Only for the largest value of the dipolar

coupling, cd = 10−1, do we see small deviations between the two excitation energies. We note

that this corresponds to a very high dipolar coupling: for a molecule with B = 0.01cm−1

and d = 5 Debye, at a density of ρ = 1014cm−3, the corresponding value of cd is still only

≈ 10−3.

The most striking feature of Fig. 1 is the behavior of the perpendicular dispersion curves,
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FIG. 2. Energy spectrum ω1(k) of a homogeneous Bose gas of rotating dipoles for large dipolar

coupling cd = 0.3, in electric fields of strength ε/B = 1; 2; 4; 8; 16. For each value of field strength

ε/B, the lower and higher dispersion curves correspond to a wave vector k perpendicular and par-

allel to the polarization (z) direction, respectively. Dotted lines show the corresponding excitation

spectra ǫ(k), eq. (4), for non-rotating dipoles polarized in the z-direction with dipole moment 〈d〉.

As the field strength is increased, 〈d〉 → d and ω1(k) approaches ǫ(k).

i.e., the excitations with k ⊥ z. For all values of dipolar coupling cd in Fig. 1, ω1(k) is

seen to become imaginary for sufficiently low perpendicular wave number, regardless of how

small the dipolar coupling cd becomes and even at a weak average polarization of less than

1%. Hence, taking into account rotational degrees of freedom leads to the same conclusion

as found for a fully polarized gas, namely that without a short range repulsion the DMBG

is not stable in the homogeneous limit. Thus within the mean field approximation, the

rotational zero-point motion of the interacting molecules does not stabilize a homogeneous

gas of rotating and interacting dipoles.

We now make an closer examination of the effects of neglecting rotational degrees of

freedom in the mean field analysis for the case of large dipolar coupling, while varying

the external field. Fig. 2 shows the lowest excitation energy ω1(k) for a very large dipolar
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coupling cd = 0.3. The field strength is varied as ε/B = 1; 2; 4; 8; 16, with respective induced

dipole moments 〈d〉/d = 0.16; 0.29; 0.48; 0.64; 0.75, relative to the bare d. As before, we

show excitations for both parallel and perpendicular dispersion (upper and lower curves,

respectively). In all cases, the system again exhibits unstable low momentum modes in

the perpendicular direction. As before, we compare these spectra with those of non-rotating

dipoles polarized in the z-direction, ǫ(k), eq. (4), with dipole strength d given by the average

value 〈d〉 (dotted lines). For low relative polarization, i.e., 〈d〉/d ≪ 1, we see that neglecting

molecular rotations leads to significant deviations from the full ω1(k). But on increasing

the relative polarization towards unity (i.e., towards fully aligned dipoles), this deviation

shrinks and ǫ(k) approaches ω1(k), as expected, indicating that the two mean field results

are consistent.

Finally, we note that regardless of the choice of system parameters, the rotation-phonon

energies ω1(k) are found to lie always below the excitations of the fully polarized gas, ǫ(k).

B. Results for g > 0

We have seen above that in the absence of short range repulsion, i.e., when g = 0, an

arbitrarily small external field leads to a collapse of the homogeneous DMBG, even when

rotational degrees of freedom are taken into account. We now stabilize the DMBG by

adding a short range interaction of strength g, until the imaginary part of the spectrum at

small values of momentum vanishes, and compare again with approximation of non-rotating

dipoles ǫ(k), eq. (4). We define a repulsion parameter γ ≡ ρg/B, which is the ratio between

the mean field of the short range repulsive interaction and the molecular rotational constant.

In Fig. 3, we show the dispersion of the lowest mode ω1(k) for perpendicular and parallel

wave vectors k, in units of B. As before the dipolar coupling was set to a very large value of

cd = 0.3. The external field strength here is ε/B = 5× 10−3, resulting in the weak relative

polarization 〈d〉/d = 0.81 × 10−3. The repulsion parameter in the four panels varies as

γ = 0; 0.015; 0.030; 0.035. The plot shows that a short range repulsive interaction can shift

the instability down to smaller values of k and for a sufficiently large value of g the instability

is entirely removed. Furthermore, just as is seen with g = 0, the mixed rotation-phonon

excitation ω1(k) is found to lie consistently below the excitation ǫ(k) in the full polarization

approximation. This implies that a larger value of γ and hence of the short range interaction
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FIG. 3. Energy spectrum ω1(k) of a homogeneous Bose gas of rotating dipoles for dipolar coupling

strength cd = 0.3, in a weak electric field of strength ε/B = 5× 10−3, for four different short range

repulsion parameters γ ≡ ρg
B = 0; 0.015; 0.030; 0.035. The dispersion relations for perpendicular and

parallel wave vector k are shown in red and blue, respectively. Dotted lines show the corresponding

spectra ǫ(k), eq. (4), of non-rotating dipoles polarized in the z-direction, with average dipole

moment 〈d〉 and the same values of g.

strength g is required to stabilize a DMBG with active rotational degrees of freedom.

The inequality ω1(k) < ǫ(k) evident in Figs. 2 and 3 has another consequence. Fitting

the excitation energy ω1(k) to the form of ǫ(k), using 〈d〉 as a fit parameter is inconsistent

with the anisotropy of the excitations. For example for perpendicular k, we could indeed

obtain an excellent fit with an effective 〈d〉 value that is larger than the true value. However,

according to eq. (4), such a larger value of 〈d〉 increases ǫ(k) for parallel k, moving away from

ω1(k). Conversely, we can choose to fit the parallel dispersion relation (giving an effective

lower 〈d〉), but then the perpendicular dispersion is not fit well. Thus it is not possible to

fit ǫ(k) to ω1(k) consistently for all directions of k with a single fit parameter 〈d〉.
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V. CONCLUSIONS

In this work we have calculated the excitation energies of a dilute gas of translating

and rotating dipolar molecules in a mean field approximation. We analyzed the excitation

spectrum by constructing the Bogoliubov-deGennes (BdG) equations for the coupled trans-

lational and rotational excitations from the linearized Gross-Pitaevskii mean field equation

for a homogeneous dipolar gas. We calculated the rotation-phonon excitations for molecules

interacting with both the long range dipole-dipole potential and a repulsive short range

potential, modeled here as a simple isotropic pseudo-potential.

Analysis of the unpolarized case in the absence of an external field, showed that only the

L = 1 rotational states of the molecules are coupled by the dipole-dipole interaction. Adding

a finite short range interaction is seen to modify only the L = 0 spectrum, when this short

range interaction is approximated by an isotropic pseudopotential. Consequently all states

with L ≥ 2 are unaffected by both short and long range interactions. The interesting case

is L = 1 for which the BdG equations have an analytic solution with one singly degenerate

(M = 0) and one doubly degenerate (M = ±1) energy level. In the k = 0 limit where the

excitations are purely rotational, the resulting pure dipolar splitting of the L = 1 rotation

states is found to be proportional to the density ρ. For realistic molecular dipoles and

densities, the relevant energy splitting is in the range of radio frequencies. This splitting

might be of experimental relevance since it could be used as a probe of the density of a

dipolar molecular Bose gas.

We also considered the polarized case where an external field leads to a partial alignment

of the molecules, resulting in a non-vanishing average dipole moment 〈d〉 parallel to the field.
Here we found that the BdG excitations of the homogeneous Bose gas of rotating dipoles

lie below the corresponding fully polarized excitations ǫ(k) for dipoles oriented along z with

effective dipole moment 〈d〉. Just as for fixed dipoles, in the absence of short range repulsion,

we found that an arbitrarily small external field acting on the dipoles will lead to a collapse

of the system that is driven by the long wavelength phonon excitations in the direction

perpendicular to the field. Thus we conclude that the rotational zero-point motion is not

sufficient to stabilize the pure dipolar system against collapse. However, adding a finite short

range interaction was seen to move the onset of instability down to smaller wavenumbers

and to remove it entirely when the short range interaction strength, measured here by g, is
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large enough. Thus, as in the full polarization approximation, g can be tuned to stabilize

the DMBG. However we expect that such tuning will be very system specific and non-trivial

for molecules, unlike the case of atoms where g may be generically tuned with a magnetic

field.

Additional factors contribute to the stabilization of a DMBG in situations other than the

homogenous setting considered here. It is well known that cold atomic gases with purely

attractive interactions may be stabilized by spatial confinement up to a critical occupation

number45. Similarly, for cold atoms with magnetic dipole moments it has been confirmed ex-

perimentally that they can be stabilized by appropriate trap geometries, with an oblate trap

geometry typically imparting more stability3. The dipolar interaction drives dipoles towards

head-to-tail orientations, which would lead to an elongation of the density distribution, and

eventually to a mean attraction so strong as to lead to a collapse. A sufficiently strong trap

in the polarization direction will prevent this elongation and thus can protect a dipolar gas

from the associated collapse21. With new experiments on quantum gases of RbCs molecules

coming online46, further extension of the current work to analysis of inhomogeneous, i.e.,

trapped, DMBGs of unpolarized and polarized molecules is worthwhile. It is straightfor-

ward to derive the corresponding GP equation and BdG equations using the procedures

outlined here, although solving them numerically will be computationally more expensive

than for the homogeneous situation for which solutions were derived in this work. Finally, it

is important to test the predictions made here using the mean field approach by comparison

with methods that go beyond the restriction of the mean field approximation. We have

recently developed a path integral ground state Monte Carlo code for molecules possessing

both rotational and translational degrees of freedom that allows analysis beyond the mean

field approximation47. Within this approach excitations may be accessed by evaluation of

imaginary time correlation functions. An alternative approach to go beyond mean field is

to employ quantum many-body methods. A promising option here is the hypernetted-chain

Euler-Lagrange method, which has recently been shown by one of us to be capable of describ-

ing ground and excited states of polarized dipolar quantum gases in the strong correlation

regime26. Generalization of this approach to include rotational degrees of freedom will be

made in future work.
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Appendix A: Dipole-Dipole Interaction

Since the dipole-dipole interaction V , eq. (1), enters the GP equation as a convolution

product, we need to calculate the Fourier transform of V . We express the scalar product in

terms of spherical harmonics, Ωi · r̂ = 4π
3

∑

m Y1m(Ωi)Y
∗

1m(Ωr), and obtain

V =
1

r3
4π

3

∑

m

Y1m(Ω1)Y
∗

1m(Ω2)−
3

r3

(

4π

3

)2
∑

m

Y1m(Ω1)Y
∗

1m(Ωr)
∑

m′

Y ∗

1m′(Ω2)Y1m′(Ωr)

(A1)

The Fourier transform of the first term alone is not defined (the integral over 1
r3

diverges),

but the divergent term will be cancelled by parts of the second term. We Fourier transform

the second term, by expanding the plane wave in spherical harmonics

V
(2)
k

(Ω1,Ω2) =− 3

(

4π

3

)2 ∫

d3r e−ikr 1

r3

∑

m

Y1m(Ω1)Y
∗

1m(Ωr)
∑

m′

Y ∗

1m′(Ω2)Y1m′(Ωr)

=− 3

(

4π

3

)2

4π
∑

λ,m′′

∑

mm′

(−i)λCλYλm′′(Ωk)Y1m(Ω1)Y1m′(Ω2)

[

λ

m′′

1

m

1

−m′

]

(−1)m
′

where Cλ ≡
∫

dx jλ(x)
x

and the bracket denotes an integral over three (complex conjugates

of) spherical harmonics

[

ℓ1
m1

ℓ2
m2

ℓ3
−m3

]

≡
∫

dΩ Yℓ1,m1
(Ω)Yℓ2,m2

(Ω)Y ∗

ℓ3,m3
(Ω)

=

√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(

ℓ1
0

ℓ2
0

ℓ3
0

)(

ℓ1
m1

ℓ2
m2

ℓ3
−m3

)

(−1)m3

Due to selection rules, only λ = 0, 2 contribute. For the λ = 0 term we get −4πC0P1(Ω1 ·Ω2),

which indeed cancels the Fourier transform of the first term in eq. (A1). Hence, the Fourier

transform of V is (C2 =
1
3
)

Vk(Ω1,Ω2) =
d2

4πǫ0

(4π)3

9

∑

mm′m′′

Y2m′′(Ωk)Y1m(Ω1)Y
∗

1m′(Ω2)

[

2

m′′

1

m

1

−m′

]

(A2)
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Vk(Ω1,Ω2) depends on the direction of k (but not the magnitude k) and the two orientations

Ω1 and Ω2.

A special case of (A2) is the Fourier transform of the interaction between aligned dipoles

Ω1 = Ω2 = ez

Vk =
d2

4πǫ0

4π

3
(3 cos2 θk − 1) (A3)

that can also be obtained directly, without a detour via non-aligned dipoles37.
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