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Abstract We study a model for cold Bose and Fermi gases based on the Lennard
Jones interaction, using the optimized (Fermi-)hypernettedicf{B)HNC-EL)
method. For comparison, we also have carried out path integnahgrstate Monte
Carlo (PIGSMC) simulations in the Bose case. By varying the temsid the
coupling strength for the Lennard-Jones potential, we coventime range of
dilute, weakly interacting gases up to the dense, strongiyacting case of liquid
3He and*He. Below about 20 percent helium equilibrium density, thepbérst
version of the (F)HNC-EL theory is accurate within better than 1 ¢yerc

PACS numbers: 74.70.Tx,74.25.Ha,75.20.Hr

1 Introduction

The Lennard-Jones interaction

=] () ()] ®

has for decades provided a useful model for examining interagtasgs, liquids,
and solids. It can be tuned from a rather weak to a strong interaatidrshows
the essential phase transitions of a quantum liquid, narheljiquid-gas and the
liquid-solid transition. In the appropriate parameter range, gvanlard-Jones lig-
uid can also be considered a model system for cold moleculasgas

The energy scale of the interaction is characterized bnd the length scale
by 0. As a convention, we measure energies in unitd?¢2ma?, and length in
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3 2l Fig. 1 The plot shows the scatter-

ing lengtha as a function of the

4 f coupling constane. The vertical

” : i ,o lineate= 1118 indicates the cou-
] pling strength where a two-body
coupling constant e bound state appears.

units of g. The Hamiltonian is then given by

H=— 02+ v(jx—x) 2)

i i<]

wherex; = r;/o are the dimensionless coordinates afix) = 4e[x 12 —x~9].

e = 2mo2¢ /R? is the dimensionless coupling constant. In this work we tane
and the dimensionless densityto investigate different regimes of correlation
strength.

In cold gas applications, the interaction is often charactefigeits scattering
lengtha because this is, in the low density limit, the only quantitgttdetermines
the equation of state, seeg.Ref. [1]. The scattering length is determined by the
coupling constane. Fig. 1 shows the relationship in the regime<Ze < 20. For
largee, the potential provides a reasonable model of the interactbwden two
helium atom$: 3He corresponds te = 8.26 whereas'He corresponds te =
11.02. The Lennard-Jones model predicts the obsér{€aveakly bound state of
“He dimers for coupling strengthes> 11.18, corresponding to a well depth of
10.37K

Over the past three decades, a set of “generic” equations e dezived
that contain the essential physics of the many-body probleenshell spell out
these equations further below. The first derivation was baseHeoaptimization
of the Jastrow-Feenberg form of the wave funcfiohowever, it was noted very
early’ that “...it appears that the optimized Jastrow function is blpaf sum-
ming all rings and ladders, and partially all other diagramsnfimite order.” The
observation was quantified by Jacksetn al. who showed that the same equa-
tions can be derived by self-consistently summing ring- anddadiéagrams of
the perturbation seri@$"19 Further derivations of the same equations have been
done within the coupled-cluster thedfyand within a pair-density functional ap-
proach?. Thus, we have at hand a system of generic equations, termednieyp
ted chain - Euler Lagrange equations, that determine the grstaiel structure of
a quantum fluid.

Since the analogy between different formulations of the many Ipodblem
has been worked out in much less detail for fermions, we will baseligcussion
on the Jastrow-Feenberg theory for strongly interacting systEnesnethod starts



with anansatzor the wave functiofi

%(L...,N) = F(I’l,...,I'N)Q’o(l,...,N)

F(re,...,rn) = exp% Zul(ri)+ZU2(ri,r,~)+... , (3)

] i<]

where®y(1,...,N) is a model state, normally a Slater-determinant for fermions
and®y(1,...,N) =1 for bosons. An indekdenotes both spatial and spin coordi-
nates. The correlationg(ri,...,rn) are obtained by minimizing the energy

5 (Yo[H %)
Oun(ra,....rn) (Y4b|4p)

In an approximate evaluation of the energy expectation vatlug,jmportant to
make sure that the resulting equations are consistent witxtietvariational de-
termination of the correlations. It has turned out that the hyperdehain hierar-
chy of approximations is the only systematic approximatidresee that preserves
the properties of the variational problénirhis hierarchy is also the one that al-
lows the diagrammatic identification of Jastrow-Feenbergrihaad Feynman-
diagram based perturbation theofi€gC

—o0. (4)

2 Bosons
2.1 Generic Many-Body Equations
In what follows, it is convenient to define the Fourier transformhwvét density

factor,i.e. f(k) = p [ d3 €"kf(r). The equations are formulated in terms of the
pair distribution functiorg(r) and the static structure function

SK) :1+p/d3r e [g(r) —1]. ©)

There are two equivalent forms of the HNC-EL equations. The firsi®aeBo-
goliubov” form

4m

Sk = [1 " e

that determine§(k) as a function of a “particle-hole interaction”

\7ph<k>} - 6)

ﬁZ
Vorn() = 60) D) (D) + = | 0V/G0[ o) - 1w(r). ()
Above, we have introduced the “induced interaction”

21,2
W9 =~ |1- g | 250+ @

and an “irreducible” part of the interactiow,(r), see below.



The second formulation of the same equation is a Bethe-Golelsqnation
for the square-root of the pair distribution functigfr)

2
T2 /g(0) = W) + W)+ (0] V(T ©)

Eg. (9) has the form of a 2-body Sddinger for the zero-energy scattering wave
function. Sinceg(r) has to fulfill g(r) ~ 1+ &/(r=*) for r — oo, w(r) andVi(r)
must guarantee that the s-wave scattering length of the “inun@dinteraction
potentialv(r) +w(r)+V;(r) is always zero. In either form, the HNC-EL equations
are nonlinear and can be solved iteratively to obtgm).

The energy per particle has the form

E=Er+Eqg+E (10)
where ,
R 2
Er = %/dgr {g(r)v(r) + ’D\/g(r)’ } (11)
and
Eo_ dk  R2k% (S(k)—1)3 15
Q- _/ 2m3p 8m  Sk) (12)

Eqgs. (6) or (9) follow by minimizing this energy expression witspect tog(r).
E, is a functional of the pair distribution function, it generatas irreducible
interaction through

2 OF
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E, is, within the Jastrow-Feenberg variational theory, expressibterms of el-
ementary diagrams and multiparticle correlations. In parquet-aiagheory it
is a sum of diagrams that is neither particle-particle nor particie reduciblé®.
Taking into account three particle correlations and elemeniagrams with up to
five nodes leads to the HNC-EL/5+T method, while the simpl@$CHEL version
is obtained by completely omitting (r). This defines the HNC-EL/O approxima-
tion. HNC-EL/5+T contains one phenomenological parametar dacounts for
the slow convergence of the series of elementary diaglams

(13)

2.2 Path Integral Ground State Monte Carlo

Path integral ground state Monte Carlo (PIGSMQpakes advantage of the equiv-
alence between the Sdinger equation in imaginary time and a diffusion equa-
tion, similar to diffusion Monte Carlo. A trial staté; is propagated in imaginary
time towards the ground state wave functiog

YR B)=ePHys(R) — e FoPy(R) for g — oo (14)

whereR= (r4,...,rn) is the set of coordinates of particles. In order to evaluate
the evolution operatoe A1 it is factorized into a product of short-time evolution



operatorsg A" = (e 4™)M whereAt = B/M. This allows the use of short-

time approximations foe 2™, Therefore, like in path integral Monte Carlo,
we perform Metropolis sampling of a whole “evolution path” of ignrations
(Ro,...,Rom), whereR; is now the set of B coordinates of all particles at discrete
time stepsr; = iAt. In PIGSMC, the end of the paths of lengBhare weighted
by the trial statets from which the time evolution starts and which guides the
random walk. The middle of the path, at time stgp= 3/2, corresponds to a
state (R, v ) evolved for a time spafi/2. For sufficiently largg3 /2, according

to Eq. (14),¥(R 1v) approximates the exact ground sta&R, g) — ®(R). In
PIGSMC the following distribution function is sampled by a Mewbp random
walk

M
P(Ro,...,Rom) = Y6(Ro) I_LG(Rj—l,Rj,AT) Y6 (Rom) - (15)
=

HereG is the coordinate representation of the evolution operatoraginmary time

e 4™ We use a short-time approximation which is based on a multi-mtoehs
pansion ofG(R;_1,Rj,A1) up to any desired order iAT. 15n practice, we found
that for*He the fourth-order scheme offers the best trade-off between nurnerica
complexity and efficiency. Therefore the fourth-order multi-prodaxgansion is
used here. All simulations were done with 256 particles in acsionulation box

of side lengthL = (N/p)¥/3, with periodic boundary conditions.

2.3 Numerical Analysis

Since botH'He and®*He undergo spinodal decomposition at about 75% of satura-
tion density, the low-density limit can never be reached for Biereducing the
coupling constarg, we decrease the attraction of the LJ potential and thus prevent
spinodal decomposition at lower densities. We can makephyparison between
HNC-EL/0, HNC-EL/5+T and PIGSMC, quantitative statementstandccuracy

of the HNC-EL method.

The calculation of the equation of state of a strongly inténgdBose system is
by now a routine matter. Fig. 2 shows the equation of $&&g8 /N for several cou-
pling constant®, and compares with PIGSMC results. We show both the results
of the simple HNC-EL/O approximation as well as results of a flMEGEL/5+T
calculation. The HNC-EL calculations are orders of magnitude ostly com-
putationally than PIGSMC simulations, but the agreement efHINC-EL/5+T
results with the PIGSMC results is excellent. The discrepaneigsHNC-EL/O
increase with density. It is well known that HNC-EL/O recoversycatbout 75%
percent of the binding energy 6He at the experimental saturation density, and
we obtain a similar result fog = 10.

Fig. 2 also shows that, fag > 5, the equation of state ends at the spinodal
point,i.e. the densityp where the hydrodynamic speed of sound vanishes and the
system becomes unstable against infinitesimal fluctuatibhe spinodal point
moves to smallep aseis decreased, and fer< 4 and smaller there is no spin-
odal point anymore. Instead we find stable solutions down tdrarthy low den-
sity. This low density regime will be discussed in detail imte of the s-wave
scattering length in the following section.
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Fig. 2 (Color online) The figure shows the equation of state of thenlaed-Jones liquid in the

strongly interacting regime as a function of coupling canstand density, obtained by HNC-
EL/5+T (full lines) and HNC-EL/O (dashed lines). Also shoare the spinodal points (blue
diamonds connected by a dotted line), the equilibrium dess{blue circles connected by a
dotted line) and PIGSMC data (red stars, error bars are emhtin the symbol size). The arrow
at the top of the figure indicates the equivalent equilibriensity of*He.

Fig. 3 shows the static structure functigk) and the pair distribution function
g(r) fore=1,5 at low densityp = 0.1 ande= 10 at high densityp = 0.4. In order
to be compatible with the periodic boundary conditions, forRh@&SMC results
for S(k) we have to restrict the wave vectorskte= 211(ng, np, n3) /L, wheren; are
integers. Again, the agreement between HNC-EL/5+T and PIGSMEdisllent,
except for the lowk limit of S(k), especially in the case of low densipy,= 0.1.
The statistical error is much smaller than the difference bentleeHNC-EL/5+T
and PIGSMC results. PIGSMC performs less satisfactorily for skitice it re-
lies on the decay of the trial wave function towards the grounig staong wave
length phonons (i.e. with smak) decay slowest, and therefore, for finite decay
time, the evolved trial state may still be contaminated wihg wave length
phonons, which leads to a bias in the lewehavior ofS(k). We note that the total
energy per particle is much less affected by these residuatilcotions of low
energy excitations. The problem could be rectified by longeagd¢imes (ren-
dering the simulations more expensive) or better trial wavetfons — such as the
generalized Jastrow ansatz (3) optimized by the HNC-EL metisetf.iinstead,
in the present work we employed the simple McMillan angagz; g a®/Iri—ril®
for the trial wave function, where we optimzedby variational Monte Carlo. The
combination of HNC-EL and PIGSMC, with HNC-EL providing the trighve
function, will be a subject of future work.

2.4 Low density limit

Cold gases are only weakly correlated due to their low dengity,thus do not
require highly sophisticated many-body treatments appropriatadécelium lig-
uids. The problem at hand is, due to the hard-core of the interadigriori
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Fig. 3 The figure shows three representative calculations of #itéc ftructure functiors(k)
(left) and the pair distribution functiog(r) (right) in PIGSMC (markers) and HNC-EL/5+T
(solid line). The errorbars of the PIGSMC results are sméttlan the size of the symbols.

not susceptible to a mean-field treatment. One deals with titeduse repulsion
normally by constructing an equivalent soft-core effective irdoa that is char-
acterized by the scattering length. Microscopic many-bodyrthean deal with
short-ranged repulsion directly. We demonstrate here how the |ositgldimit
comes out directly from our manifestly microscopic theory.

Below about 25 percent of tHfiHe saturation density, we can igndee and
Vi (r) because these go at leasidsr p?, respectively. The terrBg also goes as
p?, thusER is the onIy term that survives in the low-density limit. Miniririg Eg
with respect to,/g(r) leads to Eq. (9) witlw(r) =Vi(r) = 0,i.e. it reduces to the
zero-energy scatterlng equation

2
T 02 /gl = v Valn). (16)

The asymptotic form of the solution is
a
Vo) ~1-— (17)

wherea is the scattering length. Because of the long rangm we must now
be careful when using Eq. (16) for the calculatiorEaf

ﬁZ

Er = 27Tp/drr2 g(rv(r) +

R—o0

= 2mp lim [ . Rdrrzx/g(r) [V( —DZ} Vol R2 v

_ 2mphfa
==

(18)

That is,Er recovers the low density limif because the first integral in the second
line vanishes as a consequence of the zero-energy scattetiatoeq(16). We

note that the limiR — o is not trivial, because foR — o, \/g(r) ~ 1—0O(r=4)
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Fig. 4 Ratio of the en-
ergy obtained by HNC-
EL/O and the Lee-Yang
expansion, Eq. (29),
for  coupling  constants
e = 1,2,3,4,42,4.3,4.32.
Higher curvesE/E,y corre-
spond to highere, and thus

‘ ‘ to lower scattering length
le-04 1e-03 le-02 1e-01 4 which changes sign at
p e~ 4.336.

E/Ey

at finite densityp. With decreasing, the interparticle distanaewhereg crosses
over from the regime where eq. (17) is valid to the regime whereOlr ) is
valid is pushed to larger and larger distances, as we hawketi@umerically.

The result isper se not surprising, the proper many-body treatment of the
problem provides, while hardly more complicated than a mean digliculation,
more information: Noting tha¥, h(0+) — 2Er asp — 0, Eq. (6) shows that
Er > 0 and, henca > 0 is a necessary condition for a stable ground state in the
homogeneous low density limit.

The non-analyticity of the equation of state as a function aftecing length
emerges from the square-root in the Bogoliubov equation (6) arus leathe
well-known expansion of the equation of state for low dengity small scattering
length by Lee and Yang

R2pa 128

3\ 1/2
> 1+15n1/2(na) +...0. (19)

Ey =4m

In order to make quantitative statements about how the meahtinit is
approached, we discuss the equation of state as a functioe dktisity and the
swave scattering length. It is sufficient to use the HNC-EL/O approximation
because elementary diagrams and triplet correlations are ridglagilow density.

In Fig. 4 we show the relative deviations of the energy obtamedNC-EL from
the Lee-Yang expansion (19). The relative deviations increatie am increase
of the coupling constant towardse ~ 4.336 wherea vanishes, see Fig. 1. In
other words, if we decreaseto a small but finite positive value, we have to go to
exceedingly low densities to recover the regime where Eq. (28)lid.

As we have mentioned at the end of the previous section, HNCeakes to
give low density solutions, i is raised above a certain value and the absence of
low density solutions means the system would undergo spirsetomposition.
As expected, spinodal decomposition appears rightat.336, i.e. whera van-
ishes. Foe > 4.336 and even for coupling strenggfbeyond the divergence af
see Fig. 1, where bound two-body states appear, HNC-EL willlygelutions for
the homogeneous ground state only if the density lies ab@vsgimodal point. In
this regime of large coupling strength the ground state is a seifith (liquid or
solid) state, not the gas state that is of interest in the fieldtoa-cold gases. In



order to describe quantum gases of e.g. alkali atoms, whichrdyereeta-stable

and decay via three-body scattering, also HNC-EL will require #eeaf an effec-

tive potential obtained from low-energy scattering cross sestior other means
of stabilizing the meta-stable gas state.

We stress that, unlike mean field approximations, the HNC-ELhowketlso
provides a correct description of the stability. The input toHNC-EL/O equa-
tions is the LJ potential and nowhere in the equations appeasschattering length
a. We only usea to discuss the results, but not to obtain the results.

3 Fermions
3.1 FHNC-EL Theory

In principle, the analogy between the fermion version of Jastroenberg theory,
parquet-diagram theory, and coupled cluster theory persists fordiesmHow-
ever, details have not been worked out to an extent that the éasations of the
fermion Jastrow-Feenberg theory have been derived by other nmiams.ermi-
HNC equations are, due to the multitude of exchange diagraswsnzore com-
plicated than the Bose-HNC equations. For a general discus$ithe equations
and the corresponding Euler equations, see Ref. [18].

The simplest version of the FHNC-EL theory (“FHNC-EL//0”) is no mo
complicated than the HNC-EL method for bosons. The fermion wersfothe
Bogoliubov equation (6) is

S(k)

NERE ARG

S(k) = ; (20)

whereS:=(k) is the static structure function of the free Fermi gas. The “induced
interaction” is given by

Wi (K) = LS 1J72q”+q. (21)

2m [SF(k) EECIREIS

A useful auxiliary quantity is the “direct-direct” correlation fuian l44(r), the
Fourier transform of which is given by

Faa(K) = (S(K) — Se(K)) /SE(K) (22)
The pair distribution functiog(r) can be obtained frorfyqy(r) as
g(r) = [1+ Faa(r)][1+C(r)] (23)

where, roughly speaking;(r) is related to exchange whilgg(r) are the cor-
relations due to the interaction. In general, they both depenelch other, and
the FHNC equations cannot be solved for them separately. In HiNCFEL//O
approximation[1+C(r)] is in leading order in the density equal to the pair distri-
butiongg (r) of the free Fermi gas.
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Fig. 5 The upper row of diagrams in the figure show the first nondtiedbrrection to the set
of eeexchange diagrams. The diagrammatic conventions of Re&rd&ised; the trivial dia-
gram representing the exchange I&&tk) — 1 is not shown. The lower row shows the leading
contribution toXge(k). The combinations of all diagrams shown in each row guaesifie long-
wavelength properties eqgns. (26) and (27).

In terms of these quantities, the total energy in FHNC-EL//raximation is

E =Tr+Er+Eg,

2

Er = %/d3rgF(r) {[1+ Taa(r)] v(r)+i’mm’2} | 24)
3 22

o= _/(2(jr)kzp %Gﬁ@ [SE(a)/S(@) - 1] -

whereTg is the energy per particle of the free Fermi system. The simil&yiBggs.
(6), (8), (11) and (12) is obvious.

More advanced versions of the theory include more complicatedoseex-
change diagrams, either in an order-by-order expansion or in thedbintegral
equationd®. The exact form of the structure functi&k) in terms of “non-nodal”
exchange diagrams is

(1+Xee(K)) (14 (1+ Xee(k)) Faa(K))
[1— Xge(K)]2

The most important features that must be satisfied for a meanimghlémenta-
tion of the optimization are the long-wavelength properties

S(k) =

(25)

Reo(K) = S (K)— 1+ O(K) as k— 0+ (26)
Xge(k) = O(k) as k— 0+. 27)

The first non-trivial diagrams contributing (k) and Xge(k) are shown
in Fig. 5; the simplest approximation consistent with the atéwnal problem is
Xee(k) = S (k) — 1 andXge(k) = 0. We shall refer to the approximations including
no diagrams (corresponding to simplest version of FHNC-EL intredwabove),
theXeediagrams, and th¥ye diagrams shown in Fig. 5 as to FHNC-EL//0, FHNC-
EL//1, and FHNC-EL//2, respectively. The implementationuidiing “elementary
diagrams” and triplet correlations as described in Ref. [18] wéllreferred to as
FHNC-EL/5+T.
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| FHNC-EL/5+T
FHNC-EL//2

L FHNC-EL//L -~
FHNC-EL/0 -

Fig. 6 The correlation energy
Er + Eq is shown as function
= et : of density for various levels of
s ) 1 the FHNC-EL method, for cou-

2| . pling constantse = 1 (upper set
of curves) ande = 5 (lower set
-4 * * * : * ’ * of curves). CBF corrections as de-
0.00 0.10 0.20 0.30 0.40

scribed in section 3.2 are included
in all calculations.

1 SHe
v
07 einc-gLI0
8 | FHNC-EL/5+T —
Fig. 7 The equation of state is
6 shown in the regime of coupling
w o4l constants X e < 10 (top curves to
bottom curves). The FHNC-EL//0O
2t approximation (dashed lines) is
compared with the full FHNC-
0 EL/5+T theory containing four-
ot and five-body elementary dia-
grams and triplet correlations (full
-4 . . . . . : : lines) as described in Ref. 18. The
0.00 0.10 0.20 0.30 0.40

arrow points to the equilibrium

e density of*He.

A detailed numerical comparison between the different appradamdevels
of the FHNC-EL theory is tedious and not very illuminating. Figshows two
representative sets of calculations of the ground state engithyenergy of the
free Fermi gas subtracted. Evidently, the overall convergendbeoprocedure
is not as systematic as for bosons, the only clear messages $edma that both
elementary diagrams and triplet correlations are important foratan at high
densities. In the low-density regime the message is simildreémhe for bosons:
The simplest version FHNC-EL//O lies within a percent accurdayeasities of
O.%So‘?’ and less. This is about 20 percent of the experimental satnrdgiosity
of °He.

Fig. 7 shows the equation of state for coupling constantsk 10 as calcu-
lated in the full FHNC-EL//5+T scheme described in Ref. [18] amthie simple
FHNC//0 approximation (20)-(24). Note that in both figures 6 and Ttreelated
basis functions corrections described in the next section aseralided.

3.2 Correlated Basis Functions (CBF)

Unlike for bosons, the Jastrow-Feenberg theory is not even igiptinexact for
fermions. This is a manifestation of the well-known “nodal susfaproblem:
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The nodes of the correlated wave function (3) are identical toettwbghe free
Fermi gas. In Monte Carlo calculations, the problem can be curédelsasing”
the nodes, albeit at a high price in terms of computational. ¢ostemi-analytic
theories like the Jastrow-Feenberg theory, one uses the caretgieratof- to

generate a complete basis of the Hilbert space,

Wm(rl,...,rN) = F(rl,...,rN)cDm(rl,...,rN). (28)

The procedure has been implemented either as a finite-order [ziuriexpan-
sion or by summing selected classes of diagrams, for a pedadogview, see
Ref. [19]. A working formula that sums all ring-diagrams in a correldtasis is

AERpA D /d3kdw [ 1—Vp-n(K) Xo(k, w) 29)

1-Von(k)Xg"A (k, )

where xo(k, w) is the Lindhard function, angt}'SA(k, w) is the “collective ap-
proximation” for the Lindhard function,

R2k?
X0A (k, w) = m : (30)

. k2 2
@+ (Gnsw)

Note also that Eq. (20) follows from the RPA relationship

st = ~0m [ “xik),

Xo(K, @)
1 Xo(k. @)Vpn(K)

X(k7 w) - (31)

if the Lindhard function is replaced bg'SA (k, w).

These corrections are included in our numerical calculatiohsirhumerical
effect is very small at low densities, it ranges from 0.2 to ﬁz.Asz'Z at the
highest density op = 0.40 3

3.3 Low density limit

In the preceding analysis of Bose systems, we have shown holevthdensity
limit of the HNC-EL theory compares with the Lee-Yang expansinmparticular,
we have been able to make quantitative statements on thé&ydeimere mean
field approximations are valid, and how well low-density expams agree with
manifestly microscopic calculations.

The situation is a bit more complicated for fermions. Basic#tlg,analysis of
section 2.4 is valid for fermions as well, however, the long rasighe exchange
corrections must be taken care of properly. It is still true that,dfte kinetic
energyTr of the free Fermi ga%R is the leading term in the density expansion.
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Fig. 8 The figure showEg/p in

| the limit of low densities for cou-
-8 : : . pling constants KX e< 7. The ar-
10° 10 109 10 10 rows in the left side show the the-
p(07) oretical limitEg/p = nh?a/m.

However, the factoge (r) is, forke — 0 ge(r) =1— %(rk,:)z, hence one would
conclude

nph?a
Er— pT+ﬁ(k§/3). (32)

This assumes that the statistical correlations are much loagged than the dy-
namical correlations represented Ry(r). A second remark is concerned with
the higher-order terms ik=. Huang and Yantf prove that the equation of state
has the low-density expansion (See also Ref. [1])
h%kZ [3 2 4(11-2In2) 2

E= om |5 + 3nakp + 352 (ake)“+.. } (33)
The expansion (32) evidently misses the third term in Eqg. (33)s ©idue to
the fact that the Jastrow-Feenberg function approximates thet particle-hole
propagator by the “collective” Lindhard function (30). The prohlean be cured
by adding the perturbation corrections (29).

We note that, similar to the Bose case, the lowest order teresgiveasonably
faithful approximation to the equation of state, whereas highder corrections
are generally overshadowed by correlation effects.

Fig. 8 shows the low-density behavioriBg/p for coupling constants between
e = 1 and 7. Note that we had to go to a density an order of magnitwderlthan
in the Bose case to get reasonably close to that limit. The lemsitly limit has not
been reached in our calculations, which indicates that coiwalaffects remain
visible down to very low densities.

In Figs. 9 we show the direct correlation functiégy(r) (the Fourier trans-
formation of Eq. (22)) and the pair distribution functigf(r), Eq. (23), together
with ge(r) of the free Fermi gas. The left panels show the results for a low den-
sity of p = 4.22x 10903 for a range of coupling parameters betweer= 1
(corresponding to a positive scattering length- 0.5630), ande = 7 (negative
scattering length = —1.110). In addition we show alse = 4.336 wherea = 0.

The direct correlations are of the range of the interaction, whereasange cor-
relations become quite long ranged, with a characteristic Hessxgalekgl. When
a > 0, the interaction is effectively repulsive agr) is reduced with respect
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Fig. 9 The figures show the pair distribution functigyr), the pair distribution function of
the free Fermi gasgg (r), (upper panels), and the direct correlation functiof q(r) (lower
panels), for a density of.22 x 10~803 (left panels) and 042 (right panels). The coupling
parametere=1 ..., 7 correspond to scattering lengths- 0.5630, ...,—1.110 respectively.
Curves with higher nearest-neighbor peaks corresponddieggr coupling. The upper left panel
also shows the pair distribution funtion for coupling stylrse = 4.366 corresponding to zero
scattering length (long dashed line). Note the differeates:

to gr (r). Converselyg(r) is enhanced with respect g (r) whena < 0, corre-
sponding to an effectively attractive interaction. In facthaa < O regime where
the system is stabilized only by the Pauli pressure, the diarctlation function
develops an enormous peak, in particular at low densitiesa Fo, we find that
g(r) follows indeedye (r) most closely, except for very smalk g, i.e. when two
particles see theeal repulsive part of the LJ interaction.

The right panels of Fig. 9 showgq(r), g(r) andgg (r) for the much higher
densityp = 0.10~3. There, they(r) is clearly dominated by the repulsive inter-
action of the LJ potential, and always far fraga(r). There are small fermionic
exchange corrections, but there is no clear distinction of &gk and direct cor-
relations.

3.4 Stability
A gas or liquid becomes unstable when the incompressibiéityishes. This in-

dicatesgenerallythe spinodal point. In low density Bose gases the statement is
equivalent to the statement that the scattering length doesigh zero. At that
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point, the HNC-EL equations cease to have solutions. Thatgituis similar in

a Fermi fluid, but the Pauli pressure permits stable solutiomsfatsinteractions
with a negative long-wavelength limit. From the expansion @3¢ concludes
that, in the low density limit

2.2
me = e [1+ 2"’““] (34)
3m m
which sets a stability limiaks > —71/2.
An accurate numerical verification of the low density equatibstate is dif-
ficult. It has been showA! that the long-wavelength limit of the particle-hole in-
teraction is given by, provided all diagrams are included,

Vpn(0+) =m(c® - ) (35)

wherec is the hydrodynamic speed of sound, amdis the speed of sound of
the non-interacting Fermi gas. The condition that the term uedaare -root of
Eq. (20) be positive amounts to the stability conditimeZ +- Vp h(0+) >0
which is obviously incorrect. The problem can be cured by usm(ﬂEt) instead
of (20) for calculatingS(k).

To get the correct denS|ty expanS|oNgth(O+) it is necessary to include the
three diagrams shown in the upper row of Fig. 5. Then, the leadimg is

Vp-n(0+) = /d3 {1—10(%)} {[Hfdd ‘Dm‘ }

(36)
which agrees, in leading order kg, with the hydrodynamic speed of sound ob-
tained fromEg. The simple FHNC//0 approximation omits exchange terms in the
particle-hole interaction and therefore the low-density Ilmlt\/pih (0+) misses
a factor of 1/2. We note that it is exceedingly difficult to redhis I|m|t numeri-
cally because 4 yq(r) starts to develop an enormous peak at short distances, see
Fig. 9.

All the aforementioned corrections are small, especially in tve-density
regime of interest here. They contribute, however, to some noaiénaccuracies
which prevent us from making statements of comparable precisitimoge made
above for bosons.

4 Summary

We have carried out a comprehensive array of (F)HNC-EL calculatiarcufan-
tum fluids and gases, from very low densities up to densities qunekng the
the helium saturation density. We have shown that the (F)HNC-Rtockices the
exact low-density limits, and we have made quantitativeestants on the den-
sity regime where low density expansions are valid. In general weddhat the
simplest (F)HNC-EL approximation is adequate up to 20 to 30 peafahe sat-
uration density of the corresponding (Bose or Fermi) helium sysfée conver-
gence of the fermion expansion is somewhat slower, which isaltree multitude
of exchange diagrams.
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We have compared our Bose results with PIGSMC calculations amdifex-
cellent agreement for energy, pair distribution function, aaticsstructure func-
tion with the simplest approximation (HNC-EL/O) for the energycav density
and with the best approximation (HNC-EL/5+T). This is expeciadeseven the
simplest HNC-EL/O method contains all the relevant physicewis achieved by
a consistent treatment of short- and long ranged correlatiomgeFions, there
are no Monte Carlo calculations to compare with, we could ondess the con-
vergence of our calculations by examining different levelingblementation of
FHNC-EL.

A very interesting regime is the range of coupling constanishere the as-
sociated s-wave scattering lengitthanges sign. Fa < 0, HNC-EL correctly
predicts that a Bose gas is unstable, but a Fermi gas is stabitiy the Pauli
pressure. While foa > 0, the Fermi pair distributiony is suppressed to values
below the free Fermi pair distribution, in the regimeack O the interaction is
effectively attractive and indeed we find that the Fermi paitridistion develops
an enormous peak as we increasén other words short-ranged correlatians
creaseasa becomes more negative. Similar findings &« 0 were obtained by
Astrakharchik et aPt, who reported a peak in the pair correlation for antiparallel
spins using diffusion Monte Carlo with a BCS trial wave function.

In the weakly interacting limit, the Fermi system can undergbasp transi-
tion to a superfluid state CBF theory can be used to deal with that situation as
well'®. The correlation operatdt can be used to generate a basis of spatially cor-
related BCS states; effectively, CBF theory provides a veh@lgeherate weak,
effective potentials from strong, bare potentials. Althoughédfiective interac-
tion entering the gap-equation is not identical to the partidke interaction (it is
particle-hole reducible where#s_n(r) is particle-hole irreducible), they agree in
leading orders in a density expansion. Thus, one would expatthe system un-
dergoes BCS pairing in the density regimepositive compressibilitgndnegative
scattering length
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