Binary mixtures of magnetic fluids

W. Fenz and R. Folk
University Linz

Theory

We describe a mixture of a van der Waals fluid and a ferromagnetic Ising fluid at zero magnetic field in the framework of mean field theory. Molar Helmholtz free energy:

\[\frac{\Delta G_m(T_r, V_r, x, m)}{RT} = x \left(1 - \frac{m}{2} \right) + (1 - x) \ln(1 - x) + x \ln x \]

\[- \ln(V_r - 1) - \frac{T_m}{RT} \]

Equations of state:

\[p_r = T_r - 4 \beta(x, m) \]

\[m = \tanh \left(\frac{2RT_m}{4V_r} \right) \]

(1)

(2)

Quadratic mixing rule:

\[a(x, m) = \left(1 + R_m m^2 \right) x^2 + \frac{1 - \Delta}{1 + \Delta} \left(x - 1 + \Delta \right) \]

(3)

\[\text{and} \]

\[\zeta = \frac{\Delta}{2} \left(1 + \frac{3}{R_m} \right) \]

(4)

First order surfaces

Conditions for equilibrium of two phases \(\alpha \) and \(\beta \):

\[T_r = T_0 \]

\[\mu (x_\alpha, V_\alpha, m_\alpha) = \mu (x_\beta, V_\beta, m_\beta) \]

\[\mu (x_\alpha, V_\alpha, m_\beta) = \mu (x_\beta, V_\beta, m_\alpha) \]

Conjugated field \(\Delta \) of the concentration \(x \):

\[\Delta = m - m_0 \]

\[\Delta = \frac{1}{1 + \frac{3}{R_m}} \left(x - x_m \right) \]

(5)

(6)

(7)

(8)

(9)

(10)

Second order critical lines

At a second order critical point two phases become identical. The conditions for criticality are

\[\left(\frac{\partial \Delta \mu}{\partial x} \right)_{T_p} = 0, \quad \left(\frac{\partial^2 \Delta \mu}{\partial x^2} \right)_{T_p} > 0, \]

(11)

where \(\Delta \mu \) is the Gibbs free energy. In terms of the Helmholtz free energy this yields

\[A_0A_1A_2 - A_0A_3A_4 = 0 \]

\[A_1A_2 = 3A_0 \]

\[A_1A_3 = 3A_0 \]

(12)

(13)

(14)

where

\[A_i \equiv \left(\frac{\partial^i \Delta \mu}{\partial x^i} \right)_{T_p} \]

and

\[\Delta m = \Delta \mu \left(V_r, x, m \right) \]

\[\left(V_r, x, m \right) \]

The function \(m \) is implicitly defined by the magnetic equation of state in (2).

Surface of magnetic phase transitions

The locus of second order ferromagnetic-paramagnetic phase transitions is a surface in \(x, T_r, V_r \)-space, given by

\[V_r = \frac{2}{4R_m T_r} \]

(16)

Via equation (2) a surface in \(x, T_r, V_r \)-space is defined dividing the thermodynamic space into an upper part (\(m > 0 \)) and a lower part (\(m = 0 \)).

Critical lines

Second order critical lines on the surface of magnetic phase transitions are critical lines. Expanding the magnetic equation of state in (2) as

\[m^2 = \left(1 - \frac{3}{R_m} \right) \]

where \(\zeta \) is the vicinuity of the magnetic phase transition surface where \(m \ll 1 \), one can take the limit \(m \to 0 \) in (12) and gets an equation in \(T_r \) and \(x \) that can be written as

\[T_r = \frac{2R_m}{4} \sqrt{\frac{1 - x}{A(x)}} \]

(17)

\[\zeta = \frac{\Delta}{2} \left(1 + \frac{3}{R_m} \right) \]

\[\zeta = \frac{\Delta}{2} \left(1 + \frac{3}{R_m} \right) \]

(18)

Summary

While in ordinary binary fluid mixtures tricritical points occur only under special circumstances, mixtures with a magnetic fluid component show lines of tricritical points, lines of critical end points and magnetic consolute points. Further investigations will include Gibbs Ensemble Monte Carlo simulations [3] of such mixtures which allow for the percolation limit that is not considered in the mean field calculations.

References

Phase diagrams I

\[\zeta = -1, \quad \Lambda = 1, \quad R_m = \infty, \quad m_0/2m_0 = 0.5 \]

Ideal Ising fluid plus van der Waals fluid

Gibbs first order surface - light grey: liquid-liquid line (magnet-nonmagnetic) - red: critical line

Hot first order surface - yellow: three-phase line

Phase diagrams II

\[\zeta = 0.5, \quad \Lambda = -0.05, \quad R_m = 0.5 \]

Line of consolute points in the magnetic regime

\[\zeta = 0.5, \quad \Lambda = -0.25, \quad R_m = 0.5 \]

Critical and tricritical line

\[\zeta = 0.5, \quad \Lambda = -0.05, \quad R_m = 0.2 \]

Critical and tricritical line

References