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TASK

Development of an integral equation (IE) approach for anisotropic fluids with planar spins.
Evaluation of phase diagrams for ferromagnetic XY spin fluid models with different ratios R
of strengths of magnetic to nonmagnetic interactions in an external field H . Classification of
the phase diagram topology. Determination of the dependence of the critical temperature and
density of the gas-liquid (G–L) and liquid-liquid (L–L) transitions on H and R. Comparison
with Gibbs ensemble Monte Carlo (GEMC) and histogram reweighting (HR) techniques.

METHOD

The IE method of anisotropic Ornstein-Zernike (AOZ) equations is used in tandem with
proper expansions of the anisotropic correlation functions in terms of orthogonal polynomials.
The Born-Green-Yvon (BGY) equation and soft mean spherical approximation (SMSA) for
the closure are also applied. The resulting integro-differential equations are solved by utilizing
an algorithm basing on the method of modified direct inversion in the iterative subspace.

MOTIVATION

Up to now there were no attempts to develop the IE approach for the XY spin fluid model.
The question concerning the global phase diagram topology of the XY spin fluid including
the influence of an external magnetic field has never been addressed as well.

PROBLEM

• How to map the XY AOZ equations to those of ordinary isotropic fluids?

• What is the total number of types of the XY phase diagram topology?

• How depend the G–L and L–L critical temperatures and densities on H at given R?

MODEL

Consider an XY spin fluid model with the Hamiltonian

U =

N
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i<j
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φ(rij) − I(rij) − J(rij) si · sj

]
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N
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u(rij, ϕi, ϕj) − H · M ,

where si ∈ 2D XY and ri ∈ 3D. The exchange integral J of ferromagnetic interactions and
the nonmagnetic attraction potential I are chosen in the form of Yukawa functions,
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being the soft-core Lennard-Jones-like repulsion potential.
A complete description of the system can be performed in terms of orientationally dependent
one-body ξ(ϕ) and two-body g(r, ϕ1, ϕ2) = h(r, ϕ1, ϕ2) + 1 distribution functions which are
connected with the direct correlation function c(r, ϕ1, ϕ2) by the AOZ equation

h(r, ϕ1, ϕ2) = c(r, ϕ1, ϕ2) +
ρ

2π

∫

V

dr′
2π
∫

0

dϕ ξ(ϕ)c(|r − r
′|, ϕ1, ϕ)h(r′, ϕ, ϕ2) ,

where ρ = N/V , and angle ϕ is defined as cos ϕ = H · s /H , so that s1· s2 = cos(ϕ1 − ϕ2).

THEORY

The functions {h, g, c} ≡ f are periodic with respect to two angle variables and thus can be
expanded in sine and cosine harmonics as

f (r, ϕ1, ϕ2) =

∞
∑

n,m=0

∑

l,l′=0,1

fnmll′(r)Tnl(ϕ1)Tml′(ϕ2)

using the orthogonal Chebyshev polynomials Tn0(ϕ) = cos(nϕ) and Tn1(ϕ) = sin(nϕ) with
the simplification fnmll′ = fnmlδll′ following from the invariance of f to the transforma-
tion (ϕ1, ϕ2) ↔ (−ϕ1,−ϕ2) in view of the symmetry of Hamiltonian, where fnml(r) =

1
tntm

∫ ∫

f (r, ϕ1, ϕ2)Tnl(ϕ1)Tml(ϕ2)dϕ1dϕ2 and tn = π(1 − δn0) + 2πδn0.
Then the AOZ equation reduces to

hnml(k) = cnml(k) + ρ
∑

n′,m′
cnm′l(k)ξn′m′lhn′ml(k) ,

where ξnml = 1
2π

∫ 2π
0 ξ(ϕ)Tnl(ϕ)Tml(ϕ)dϕ are the moments of ξ(ϕ), and the 3D Fourier

transform f (k) =
∫

V f (r) exp(ik · r)dr has been used. It looks like the OZ equation corre-
sponding to a mixture of simple homogeneous fluids. This is a very important feature because
the problem can now be solved by adapting algorithms already known for isotropic systems.
Furthermore, we perform the one-body polynomial expansion ln ξ(ϕ) = βH cos ϕ +
∑∞

n=0 anTn0(ϕ). Then the cumbersome integro-differential BGY equation

β−1 d

dϕ
ln ξ(ϕ) =

d

dϕ
H cos ϕ − ρ

2π

∫

V

dr

2π
∫

0

dϕ′ξ(ϕ′)g(r, ϕ, ϕ′)
du(r, ϕ, ϕ′)

dϕ′

for ξ(ϕ), where β−1 = kBT is the temperature, allows to be solved in quadratures,

an =
βρ

2n

∫

dr

∞
∑

m=0
l,l′=0,1

(−1)l+l′ξm1lgñml(r)J(r) , ñ = n − 1 + 2l′ ,

where n ≥ 1, while a0 is determined from the normalization 1
2π

∫ 2π
0 ξ(ϕ)dϕ = 1.

In the next step, we introduce the closure relation

g(r, ϕ1, ϕ2) = exp
[

− βu(r, ϕ1, ϕ2) + h(r, ϕ1, ϕ2) − c(r, ϕ1, ϕ2) + B(r, ϕ1, ϕ2)
]

,

where the bridge function is cast in the SMSA form

B(r, ϕ1, ϕ2) = ln[1 + τ (r, ϕ1, ϕ2)] − τ (r, ϕ1, ϕ2) .

Here τ (r, ϕ1, ϕ2) = h(r, ϕ1, ϕ2) − c(r, ϕ1, ϕ2) − βulr(r, ϕ1, ϕ2) is the modified indirect cor-
relation function and ulr(r, ϕ1, ϕ2) = −[I(r) + J(r) cos(ϕ1 − ϕ2)] exp[−βφ(r)] denotes the
long-ranged part of the potential.
Once the expansion coefficients are found, all the magnetic and thermodynamic properties
of the system are obtained in a straightforward way. In particular, the magnetization is

M = 1
2π

∫ 2π
0 cos(ϕ)ξ(ϕ)dϕ ≡ ξ100, while the pressure P is calculated from the virial equation

βP

ρ
= 1 − 1
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6

N
∑

n,m

∫

rdr

(

d[φ(r) − I(r)]

dr
ξn00ξm00gnm0(r) − dJ(r)

dr

∑

l=0,1

ξn1lξm1lgnml(r)

)

.

The number of harmonics involved was N = 3. Further increase of N does not affect the
solutions. The G-L and L-L phase coexistence densities have been evaluated by applying the
Maxwell construction to P . The results below were presented for the case z1 = z2 = 1/σ
using dimensionless quantities ρ∗ = ρσ3, T ∗ = kBT/ε, and H∗ = H/ε

RESULTS

FIG. 1. AOZ/BGY/SMSA phase diagrams of the
ideal XY spin fluid (R = ∞) versus GEMC/HR
data (circles) and MF results (dashed curves).

FIG. 2. AOZ/BGY/SMSA binodals of the nonideal
XY fluid at H = 0. The magnetic transition is
plotted (as in Fig. 1(a)) by dashed lines.

FIG. 3. AOZ/BGY/SMSA phase diagrams of the
nonideal XY fluid for typical values of R and H∗.

FIG. 5. The same as in Figs. 3 and 4 but at a specific
van Laar value of R = Rvl. The triple points are
represented by horizontal dashed lines.

Four types of the phase diagram topology can
be identified overall. For large R ≥ 0.415 type
I, the system exhibits an ideal-like behavior
with the existence of a tricritical point (TCP)
at H = 0 and G-L transitions at H 6= 0 for
each R. At moderate 0.26 < R < 0.415 (type
II, the transition between a paramagnetic (P)
liquid and a ferromagnetic (F) liquid arises at
H = 0 additionally to the transition between a
P-gas and a P-liquid. Here a triple point (TP)
occurs too, where a rare P-gas, a moderately
dense P-liquid, and a highly dense F-liquid all
coexist at the same T and P . For H 6= 0, the
TPs can exist as well. With increasing H , ei-
ther the G-L (0.376 < R < 0.415, type IIa)
or L-L (0.26 < R < 0.376, type IIb) tran-
sition line terminates in a critical end point
(CEP) at some finite H . In the special case
R = RvL = 0.376, the G-L and L-L transi-
tion lines merge into the TC van Laar point
at H∗ = 1.9. For small R ≤ 0.26 (type III),
the spatial interaction dominates over the spin
one, remaining the G-L transition, whereas the
TCP at H = 0 transforms into a CEP. For
H → ∞, the system at any R behaves like a
simple fluid with u(r) = φ(r) − I(r) − J(r).

FIG. 4. The critical temperatures of G–L and L–L
phase transitions as functions of H at different R.

The G-L or L-L critical temperatures Tc are nonmonotonic in H for 0.376 < R < ∞. The
position of the minimum in Tc shifts from H∗ ∼ 3 to 1 with decreasing R. For R ≤ 0.376,
the G-L critical temperature increases always monotonically with increasing H .

CONCLUSION
A novel AOZ/BGY/SMSA technique has been proposed to study orientationally ordered fluids
with planar spins. It is powerful enough to give a quantitative description of the complicated
phase diagram behavior in the XY spin fluid systems.
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