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1.

Introduction

The provocative question in the title is a natural one when encountering a book
on classical mechanics. Why is there all that fuss about Lagrangian dynamics,
conservation laws, Hamiltonian canonical equations of motion and so on? Why
don’t we stop right after presenting Newtons equations of motion (NEOM) and
give the numerical results for some cases of interest?

In this report I shall present modern aspects of classical mechanics!. Even in
recent books or courses on theoretical mechanics they are hardly mentioned. I
will argue that it is more worthwhile than ever to look for general aspects and
properties of the NEOM and not just integrate them on a computer (admittedly
no reasonable physicist would do so).

For only a few (V) pointlike particles it is rather easy to numerically integrate
Newtons equations of motion

where m; and r; (t) are the masses and positions respectively of the particles
(In the following we consider only conservative systems, ie. F;({r;}) =
—V.V ({r;}), where V is the potential; also we use in the following the nota-

da

tion a = 7,

so that mzrz =m;

dg r;
dt?

). But nobody would be content with a simple

printout of the resulting sequence of coordinates:

5.197753757238388E-002 -1036242246627808
.1033616736531258 -1011988669633865
.1535586565732956 -9.733060747385025E-002
.2019750475883484 -9.227080643177032E-002
.2480203658342361 -8.635251969099045E-002
.2911123335361481 -7.99727737903595E-002
.3306850492954254 -7.357125729322433E-002
.3661999404430389 -6.760651618242264E-002
.397159218788147 -6.253085285425186E-002
.4231205582618713 -5.876516923308372E-002
.4437121450901031 -5.667513236403465E-002
.4586465954780579 -5.654985830187798E-002
A677322208881378 -5.858432129025459E-002
.4708806276321411 -6.286641210317612E-002
.468109667301178 -6.936939060688019E-002
.4595413208007812 -71.795010507106781E-002
.4453944265842438 -8.835316449403763E-002
.4259730875492096 -.1002207696437836
.4016517102718353 -1131077483296394
.372857928276062 -.1265010088682175
.3400549590587616 -1398424804210663

'For more details and references see my book ”Klassichna mechanika”, Lviv national uni-
versity, Lviv 1999 (in german: ”Klassische Mechanik”, Trauner-Verlag, Linz 1996).



At least she/he would try to plot the result. So let us plot the orbits of the
particles (ry (t),rs(f),...): If one is lucky the result may look like figure 2.10.
The orbit looks like a rotating ellipse, e.g. like the orbit of Mercury. The angular
velocity ¢ of the orbit (as seen from ms) has always the same sign, e.g. ¢ > 0.
But starting from different initial conditions the result may be the one shown in
figure 2.12. The important point to recognize here is that ¢ changes sign, i.e.
(ﬁ > 0 as well as ¢ < 0 occurs. For several particles the probability that the orbits
may intersect and intertwine increases. So it is hard to follow the particles. In
conclusion: The graphical representation of the orbit(s) is also of rather limited
value.

There is a possibility for a unique representation of the dynamics. Consider
the 2 sets of independent dynamical variables {r;} and {p; = m;¥;} (they are
independent because the NEOM are differential equations of second order). For
each particle they are coordinates in the 6-dimensional phase space. The NEOM
in these variables are now coupled 1% order differential equations

pi = mT;
pi = Fi({r]’}), 1=1,...,N .

Under rather general assumptions their solutions, the trajectories (r; (), pi (¢)),
do not intersect. But now a new problem arises: How to plot a 6 dimensional
space? How can one reduce the number of dimensions necessary for a graphical
representation?

That is now the point where we should look for useful general properties (i.e.
some that do not rely on the calculational power of a computer) of the NEOM
and their solutions?.

The dynamics of the system is represented in phase space by the trajectories of
many different initial values - the flow in phase space. An important question is
then the stability of the system: Do trajectories which are close to each other
at some time stay close? The reason to search for an answer to that question
is apparent: Then one does not need to know the initial conditions exactly to
predict the future state of a system; in fact one allways knows the initially given
values of the coordinates in phase space only within a certain precision.

Morover one would like to know which part of phase space is occupied by
the flow? Does it remain in that part forever? In many cases it is possible to
take advantage of general properties of the flow in phase space. An important role
is played here by the socalled first integrals; these are functions of the dynamical

2Why are we (the physicists) looking for general features at all? Because we believe that
they reflect symmetry, beauty, economy (E. Mach) of nature.



variables I ({r; ()}, {p; (t)},t) with

d ~

g leUri (@) {pi (1)}, 1) = 0.

If I, is time independent, it is a called a conserved quantity; examples are
energy or angular momentum. Such a conserved quantity law reduces the size and
the ”complexity” of that part in phase space that is covered by the trajectories.
Under some physically not too restrictive assumptions there exist - in an abstract,
mathematical sense - 3N first integrals from which one can obtain (by eliminating
t with one of these integrals) 3N — 1 conserved quantities

L({ri (), {p:(©)})  with  dI,/dt = 0.

But it turns out that, though such quantities exist in principle, very often they
cannot be given explicitly enough: such first integrals are useless or, more techni-
cally speaking, they are not separating. If one knows a sufficient number of
separating independent first integrals one knows the solution of the problem:
this is the socalled integrable case. There are very few such cases (these usually
we learn about in lectures and they are given in textbooks). The overwhelming
majority of problems is not integrable, and even shows chaotic behaviour. That
means, there is an extremely sensitive dependence of the future state of such a
system on only minute changes in the initial conditions.

But for many of these nonintegrable systems there exists an integrable limiting
case when some parameter is turned down. One may ask now: How does in-
tegrability turn into nonintegrability? An partial answer is given by the
KAM-theorem. Loosely speaking it states: A small disturbance of an inte-
grable system only destroys ”weak” trajectories, the ”strong” ones are kept. In
this way phase space is divided into regions with some regularity and such ones,
which were formerly occupied by the weak trajectories and which are now chaotic.
The application of the theorem to the question of stability of the solar system
yields a not too convincing result.



2. Examples

2.1 1-d systems: the pendulum

The EOM for conservative 1-d-systems is always integrable i.e reducible to an in-
tegral (see also below). In particular this is also true when the force is a nonlinear
function of the (generalized) coordinate as in our example: the mathematical
pendulum, a pointlike mass m suspended on a rigid stick of length | with no
weight, whose motion is restricted to a plane. It experiences only the gravitational
force, which here is considered to be constant

|F| =mg.

Its Newtonian equation of motion is
g}i +w?sing = 0,

where
w? =g/l
By multiplying the equation with & one readily finds that the energy

72
E=>1—wcos¢
2
is conserved
FE = constant

(from the conservation one easily gets b= (¢) and then ¢t = [do/f (¢)). Its
conservation is due to the independence of the system of the choice of the starting
point in time. Saying it a different way: The overall features of the pendulum
are the same for alltimes (due to the time independence of m,, and g).
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Figure 2.1: The change in shape of an initially rectangular region of starting
points for different realisations of the swinging pendulum.

For not too large initial velocities éo and not too large values of ¢y the orbits
¢ (t) stay within (—m, 7). The corresponding trajectories (¢ (t),pg (t) = qﬁ) are
calculated from

Py = ¢
Py = —wising
and look similar to ellipses (see dashed lines in figure 2.1).

Let us consider the swinging of the pendulum in many experiments. We arrange
that the initial conditions for the positions ¢ and the velocities ¢ such that they
form, by choice, the rectangle shown at ¢ = 0 in figure 2.1. Now we consider all the

runs together in the phase space (¢, qﬁ) As time goes on, there is an distortion
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of the rectangle as shown in the figure. So already for ¢ = 107 the different
realisations spread along the dotted trajectory, which denotes the behaviour of the
center of the rectangle: Initially nearby points do not stay close. Nevertheless all
points within the rectangle stay close to the dotted trajectory: Close trajectories
stay close. The system is not completely stable: If there is an uncertainty about
the intial values (and there always is only a limited precision in the intial values)
the future position in phase space cannot be predicted with the same uncertainty:.
It can be only said that the trajectories will stay close.

2.2 2-d systems: linear and nonlinear oscillators
2.2.1 The harmonic oscillator

Let us now first review a linear 2-dimensional model system, the harmonic
oscillator

itwiz = 0

y—i—wgy = 0.

These equations of motion may again result from a mathematical pendulum,
whose motion is now not restricted to a plane, but only small deviations from
the rest position (z = 0,y = 0) are allowed.

For general values of the ratio w := w;/wy there are 2 conserved quantities: the
z-mode energy E, = 1 (#* + wiz?) and the y-mode energy E, = 1 (§* + wjy?) (it
is easy to verify that their time derivatives vanish). Of course the total energy
E = E, + E, is also conserved.

Before we carry on, we consider the isotropic case:
w1 = Wa.

There are now 3 conserved quantities: the z-mode energy FE,, the y-mode energy
E,, and the angular momentum L = xy —y&. The additional conservation of L is
due to the rotational symmetry of the system. The trajectories are in a 4-d phase
space, which is hard to visualize. But we may use the constancy of E, to express
% as a function of x and thus reduce the number of dimensions to represent the
trajectories graphically. We consider this restricted phase space (z,y, y) and look
for a trajectory (x (t),y (t),py (t) = 9). It still has to fulfill the conservation laws
for £, and L. Both correspond to surfaces in the restricted phase space. This
is shown in figure 2.2: The elliptic cylinder is the surface £, = const and the
hyperbolic cylinder is obtained from L = const. Since the trajectory has to stay
on both surfaces it is just the line where both surfaces intersect or touch (as in
the figure) each other. It can be seen from the figure that the trajectory crosses
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Figure 2.2: The trajectory in restricted phase space (z,y,¥y) for an isotropic
oscillator is the line where the two surfaces touch. The surfaces represent 2
conserved quantities: the energy E, and the angular momentum L (compare

text).
Pl .

Figure 2.3: A trajectory and the Poincaré surface of section

the (z = 0)-plane in two points only. The orbit, an ellipse, is just the projection
of the trajectory onto the (z,y)-plane.

Now we return to the anisotropic case: w;/w, arbitrary but # 1. The com-
plexity of the orbits (x (¢),y (t)) depends on the ratio w;/we. They form the well
knom Lissajous figures. Some examples are the left hand parts of figs. 2.4 and
2.5.

The trajectories (z (t),y (t),ps (t) = &,p, (t) = §) are curves in a 4-dimensional
space. With the help of the conservation of the total energy we can again reduce
the number of coordinates in phase space necessary for a graphical representation.
Now we shall introduce a method due to Poincaré to represent the dynamics of
such a system in two dimensions.

If a surface in this 3d space is coveniently chosen such that the sequence of points
of intersection (crossings) of the trajectories is a complete representation of the

7
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Figure 2.4: Orbits and PSS points of an 2-dimensional harmonic oscillator for
rational frequency ratio

dynamics (cf. the sketch of figure 2.3; see the examples below) such a surface is
called a Poincaré surface of section (PSS) (Usually one adds the condition
that only the intersections of trajectories coming from a chosen side of the plane
are recorded; so in fig. 2.3 one would omit e.g. the points where the trajectory
comes from below the surface).

We now apply this concept to the harmonic oscillator. We reduce the dimension-
ality of phase space with the help of energy conservation £ = E, + E, = const

w /0y =0.679
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Figure 2.5: Orbits and PSS points of an 2-dimensional harmonic oscillator for
irrational frequency ratio



giving & as a function of the remaining variables: @ = f (z,y,9). Then we intro-
duce the plane z = 0 as PSS (and possibly accept only points with e.g. § > 0).

Consider first two examples for rational frequency ratio w = wq/ws (figure 2.4).
As can be seen on the left hand side the orbits are closed. They form the well
known Lissajous figures, whose appearance depends on the ratio w. On the right
hand side the corresponding points in the PSS are shown: there is only a finite
number of them depending also on w (in the figures all penetration points are
shown).

Now we turn to an irrational value of w. The orbits are not closed anymore
(see figure 2.5); with time an orbit would cover all the area allowed by energy
conservation. Such orbits are called almost periodic. Further there now is an
infinite number of PSS points lying on a curve, which is just the cutting line of
the surface E, = const with the PSS. So the reason for the PSS points to lie on
a curve is the existence of a conserved quantitiy, which here is a simple function
of the coordinates y and dy/dt. Such an integral is called separating.

Figure 2.6: The potential of the Hénon-Heiles system

2.2.2 The Hénon-Heiles system

The equations of motion

T = —xr—2xy

= —y+y’—a’
have their origin in modelling a galactic system. They are due to M. Hénon and
C. Heiles (Astron. J. 69,73(1964)). They can also be considered as the equations
of motion for an anharmonic oscillator. The only known explicit first integral is



the energy

E = (a':2+g'/2) +V(x,y)

DN | —

where the potential

(* + %) + 2y — 1y?’

V(xay): 3

N =

is shown in figure 2.6. Bounded motion can occur only for energies in the range
0< E<1/6=0.1666;

the motion then stays within the triangular region.

In the following figures, orbits (top row) and PSSs (bottom) for increasing energy
E =0.05, 0.11, 0.13, 0.1666 are presented. For a small energy, £ = 0.05, the
orbits look like more complicated Lissajous figures. The PSS points all lie on
appearently smooth curves. Each curve results from a trajectory starting from a
particular set of initial values.

-0.4 L L L
-0.4 0 y 0.4

This seems to indicate the existence of a further conserved quantity I» (as is the
case for the harmonic oscillator discussed above): The different curves in the PSS
would then correspond to different values of I (= const).

Allready for £ = 0.11 some orbits become irregular. For some initial values the
PSS points do definitely not lie on smooth curves; they are scattered in some
small areas.

10



E=0.11

Increasing the energy further to £ = 0.13 the number of irregular orbits also
increases. But more interesting is the increase of the area in the PSS covered by
scattered points. All those points belong to only 2 different trajectories.

Coming finally to the maximum energy for bounded motion (E = 0.1666), the
orbits are completely irregular (We have shown only one typical example) and
would fill after sufficiently long time (¢ — oo) all the triangular area also shown
in figure 2.6. In the PSS all the scattered points belong to just one trajectory.

11



0.6

dy/dt

-0.6

It has been attempted by Gustavson to calculate a further first integral for the
Hénon-Heiles system by perturbation theory. The result (figure 2.7) up to £ =
1/12 shows a very good agreement with the numerical calculations. But then
there is a clear discrepancy. Gustavsons result can not show chaotic behaviour,
due to the basic assumption of any perturbation theory: smooth dependence
of the results on the perturbation parameter. So it is important not to start
directly integrating the equations of motion, but it is equally important to check
the solutions numerically.

2.3 Chaotic behaviour

When is the behaviour of a system called chaotic?

A qualitative answer to this question is: When there is an extremely sensitive
dependence of the future state on the initial values. Allready a minute
difference in the initial state leads to completely different values in the future.

The important resulting feature of a chaotic system is the unpredictability of
the future state, since allways initial (starting) values are known only up to some
precision.

A more mathematical formulation: Chaotic behaviour can occur in a system of
more than two autonomous, nonlinear differential equations

Zti:gi(xlv"'axf)v i=17"'7f7 f237

where ¢ is a nonlinear function of {z;}. Let us consider the formal solution

T = x; ({x?} ,t) where :c? =x; ({x%} = 0) ,

12



E=1/12

Figure 2.7: The result of Gustavson obtained in perturbation theory compared
to the numerical calculation.

for two adjacent initial values {z9} and {29+ 629}. In the chaotic case the
values of z; = x; ({x?} ,t) and 7; = x; ({29 + 5:69} ,t) can become arbitrarily
distant (in some measure) with time ¢. The distance ||Z; — ;|| has to depend on
time exponentially:

lim |Z; — ]| = const x e,

where the Ljapunov exponent \ has to be positive.

The EOMs in phase space for a conservative system with time independent po-
tential are in general an autonomous, nonlinear system of differential equations of
first order. Therefore allready for one particle in 2 dimensions (N = 1 and d = 2)
chaotic behaviour can occur as in the Hénon-Heiles system discussed above. In
chaotic mechanical systems, too many of the first integrals - which in principle

13



exist! - are useless, nonseparating ones. To get an idea of such an integral imagine
a curve in phase space, which looks like a Lissajous figure for a frequency ratio
close to an irrational value: the curve consists of very many, very short pieces
(branches), where it is unique (and therfore useful).

2.4 3 body systems
We consider 3 particles which interact only pairwise via gravitational forces

Gmimj

Fij (vi,r;) = — (ri—r;), i,j=1,2,3, i#].

3
i — 1]

In general the motion of 3 masses is already very complicated, but there exists
a special situation which can be treated more easily: the socalled restricted
3-bodies problem.

2 heavy bodies my, ms move under their mutual gravitational forces on circular
Kepler orbits with constant circular velocity w in a plane. Further there is a light
mass m (< my, msg, i.e. m does not influence the motion of m; and ms) moving
only in that given plane.

p=0.1

'
[u

Figure 2.8: The potential of the restricted 3-body system as seen in the corotating
frame

14



It is convenient to consider the motion of m in the rotating frame of reference,
where m; and ms at rest. The only known first integral of the resulting equations
of motion is the energy E, which in scaled and reduced units (m = w = 1) and
p=my/(my+ msy) is

E=-(i*+9) +V(z,y).

N |

The potential

Figure 2.9: The potential in the rotating system for u = 0.5

Lio o pool—p
V= 2(x+y) - m—
(r1 and 75 being the respective scaled distances to the masses m; and ms) acting
on m in the rotating system is shown in figure 2.8 for u = 0.1. There are socalled
5 Lagrangean points: 2 maxima of V' (indicated by % in the figure) and 3 saddle

points of V' (indicated by +).

0.3

0.0 -

-0.8 »6.5 -0.2
Figure 2.10: Seemingly regular orbit around one of the heavy masses

In the following we show the orbits for = 0.5 (i.e. m; = my). If
E<-2

15



then the energy is smaller than the value of the potential V' at the saddle point
between the two masses, V' (0,0) = —2, and the orbits stay in the vicinity of one
of the masses. Figure 2.10 shows a seemingly regular orbit for £ = —2.25 but
coming closer to £ = —2, figure 2.11 shows an indication of something going on
for the light particle at energies F < —2.

7 le\\‘\’)
i X% W
i\ /

N\ N\

E=-1.75

05

0.0

l.‘O -O‘.5 0.‘0 O.‘5 liO
Figure 2.12: An apparently chaotic orbit around both masses

If
—2< E < 1.743,

where 1.743 is the value of the potential V' at the two other saddle points at
(:I:\/g/ 2,0)7 the orbits are still bounded and around both masses (see figure
2.12). The orbit shown is clearly irregular and even chaotic. This can be inferred
from the PSS (not given here, they can be found in the original papers).
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Linear stability analysis shows that for values u < 0.038 also the two Lagrangian
points Y are stable, stationary solutions of the equations of motion: There is
a small region of stable, bounded motion close to these maxima of V. The
motion is stabilized by the Coriolis force. A system to which this considerations
are applicable are the Trojans, 2 groups of asteroids in a configuration shown
below; the heavy masses are Sun and Jupiter.

Group of Achill
=

\

Jupiter

, Group of
Patroclus

2.5 Is the solar system stable?

Consider only Sun, Jupiter and Earth. The ratio of their masses is
mg :my: mg = 330000 : 318 : 1.

Is this system stable? To get an answer using analytic methods one would start
from an "unperturbed system”, which consists of the Sun and Jupiter only. Ne-
glecting the orbit of the Sun around the common center of mass, Jupiter per-
forms an Kepler-ellipse around the Sun, with period 7T); of approximately 12
years: T; =~ 12yrs; the corresponding frequency is w = 1/T;. To calculate
the orbit of the Earth analytically one would use canonical perturbation theory
with an expansion parameter € ~ mg/ (mg + my). This is now the point where
Hamilton-Jacobi theory enters, which in turn is based on the analytical mechan-
ics of Lagrange and Hamiltons principle. For a systematic perturbation theory
Hamilton-Jacobi theory is indispensible, but this is not our topic now. We only
mention that the result of the perturbative calculation will be non chaotic due
to the method (like Gustavsons result shown in fig. 2.7 for the Hénon-Heiles
system). But we know from the preceeding discussion that there are chaotic so-
lutions. These we can find only numerically. Whether a solution will be chaotic
or regular cannot be said without an analytic and numerical investigation. Con-
cerning the analytic approach there is the

K (olmogorov)A (rnol’d)M (oser)-Theorem:

For certain frequencies w of the unperturbed trajectories a small per-
turbation of strength ¢ will only change the trajectory a little (and
not destroy it).

17



A more pictorial consequence of the KAM - Theorem is the mass distribution in
the rings of Saturn (see picture 2.13). Here the rings are due to small masses
attracted by Saturn. One of the inner moons (Mimas) serves as the perturbation.
The orbits occupied correspond to stable trajectories of the unperturbed system
Saturn - dust surviving the influence of Mimas.

Returning to the system Sun-Jupiter-Earth: From the astronomical evidence
we may deduce that w = 1/7; is one of these ”stable” frequencies (or at least
it is very close). Proceeding to the solar system by adding further planets one
must mention that with increasing number of particles the chaotic region inreases
tremendously so that eventually the system is totally chaotic. The conclusion one
may draw about the solar system:

It is not impossible that the solar system is stable

but very unlikely; only the very long (as compared to the lifetime of the Sun)
characteristic times for chaotic behaviour may save us from chaos.

Figure 2.13: The rings of Saturn
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