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5. A quantum-mechanical particle in an electromagnetic field is described by the Hamiltonian
1 (h ?
H = — —A V(r).
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Show that the probability density p(r,t) = ¢*(r, )y (r,t) obeys a continuity equation of the
form 5
&p(r,t) +V-Jr,t)=0

and calculate the probability current J(r,¢). Express the current in terms of the “canonical
momentum operator”
h e
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6. Given is a gaussian wave package
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where the constant A is determmed by the normalization condition. Solve the integral and
calculate the probability density of the wave package as a function of time. Interpret your
results. Find an adequate value for A.

7. A function of a quantum-mechanical operator is defined by its Taylor series, i.e. a function
of the momentum operator would be defined by the relation

f(2)-Se ()

Show under which conditions for the coefficients a,, and the wave functions ¢/ defined on an
interval | — 0o, +00] this operator is hermitian. Calculate explicitly for n = 0, ..., 3, then try
to generalize your findings to arbitrary n.

Hint: F is hermitian if (s, F@/}k) = (F@D,, ¥yr). Use integration by parts to “move over” the
differential operator.

8. A photon is scattered from an electron at rest. What is the wavelength of the scattered
photon as a function of the scattering angle 6 if the incident photon has

(a) wavelength A\ = 5000 A
(b) energy E = 0.52 MeV.

Calculate the velocity v’ and the scattering angle ¢ of the electron for § = 7/2 in both of
the above cases.




