13. Consider two commuting quantum mechanical operators A and $B,[A, B]=0$.
(a) Show that for any eigenfunction φ of B, the function $A \varphi$ also is an eigenfunction of B to the same eigenvalue.
(b) Show that A and B have a common set of eigenfunctions. Which conclusions can you draw for non-degenerate eigenvalues? What happens if the eigenvalues are degenerate? Hint: Introduce a unitary matrix D that transforms A to diagonal form. Then write down the equation $A B=B A$ in the space where A is diagonal \ldots
(c) To have a playground to apply these theorems, use them to find the eigenvalues and eigenvectors of

$$
H=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

i. Find the matrix representation of the parity operator P in \mathbb{R}^{3}
ii. Show that H commutes with P.
iii. What are the eigenvalues and eigenvectors of P ? (You don't need to calculate them - just find them :)
iv. What is the unitary matrix S that transforms P to diagonal form, $P_{\text {diag }}=S^{-1} P S$?
v. Calculate $S^{-1} H S$!
vi. Now find the eigenvectors of H.
14. A particle moves in a potential of the form

$$
V(x)=-\frac{\hbar^{2}}{m} D \delta(x), \quad D>0
$$

(a) Justify why the wave function is continuous at $x=0$.
(b) Show that the first derivative of the wave function has a jump at $x=0$,

$$
\psi^{\prime}\left(0^{-}\right)=\psi^{\prime}\left(0^{+}\right)+2 D \psi(0)
$$

(c) Solve the stationary Schrödinger equation for $E<0$. Show that there is only one bound state. Calculate the energy of this state and the corresponding normalized wave function.
15. A quantum mechanical particle moves in the direction of the positive x-axis and hits a potential barrier of the form

$$
V(x)=\left\{\begin{aligned}
0 & \text { for } x<0 \\
V_{0} & \text { for } 0<x<d, \quad V_{0}>0 \\
2 V_{0} & \text { for } x>d
\end{aligned}\right.
$$

(a) Calculate the transmission coefficient of the particle for $E>2 V_{0}$
(b) Express the transmission coefficient in dimensionless variables. Make a sketch of the transmission coefficient as a function of the (dimensionless) energy. Hint: The following might be useful definitions for dimensionless units:

$$
\epsilon:=\frac{E}{V_{0}}, \eta:=\sqrt{\frac{2 m V_{0} d^{2}}{\hbar^{2}}}>0
$$

16. You are given the differential operator $A:=x \frac{d}{d x}$. Calculate the adjoint A^{\dagger} of A.
