17. Functions of operators are defined by their Taylor series. One important function is the exponential function, as the time evolution of a quantum system described by a time-independent Hamiltonian H is given by

$$
|\psi(\mathbf{r}, t)\rangle=e^{-\frac{i}{\hbar} H t}|\psi(\mathbf{r}, 0)\rangle .
$$

Asssuming that you already know the eigenfunctions $\varphi_{i}(\mathbf{r})$ and corresponding eigenvalues E_{i} of the Hamiltonian H, calculate the time evolution of $|\psi(\mathbf{r}, t)\rangle$ by using the spectral representation of H to evaluate the Taylor series.
18. Let A, B and C be pairwise noncommuting operators describing measurements in a quantum-mechanical system. You know that a measurement of A at time t_{0} gave the result a_{0}. Find the probability that a measurement of C at a later time gives the result C_{3}, if
(a) a measurement of B immediately after measuring A yielded b_{1}, and the measurement of C is carried out immediately after B.
(b) B was measured immediately after A, and C is measured immediately after B, but you don't know the result of B.
(c) C was measured immediately after A.
19. You are given the following matrices A and B defined in $\mathbb{R}^{3} \times \mathbb{R}^{3}$:

$$
A=\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right), \quad B=\left(\begin{array}{ccc}
2 & 2 & -1 \\
2 & 2 & -1 \\
-1 & -1 & 5
\end{array}\right)
$$

Under which condition can you find a common set of eigenvectors for A and B ? Show that this condition is fulfilled for A and B given above. Use the eigensolutions of A to calculate the eigenvectors and eigenvalues of B in a subspace. In which basis are A and B simultanously diagonal?
20. In a two-dimensional complex Hilbert-space a linear operator is defined by his action on the vectors of an orthonormal basis $\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle\right\}$:

$$
A\left|e_{1}\right\rangle:=-\left|e_{2}\right\rangle, \quad A\left|e_{2}\right\rangle:=\left|e_{1}\right\rangle
$$

(a) Constitute the operator A as linear combination of ket-bra-expressions $\left|e_{j}\right\rangle\left\langle e_{k}\right|, j, k=$ 1,2 .
(b) Is A a normal-operator? Is A self-adjoint? Is A unitary? Is A idempotent?
(c) Does A only exhibit real Eigenvalues? Does A exhibit orthogonal Eigenvectors?

Hint: A bounded operator is called a normal operator, if it commutes with its self-adjoint. Normal operators possess a complete system of orthogonal Eigenvectors.

