- 21. The Schrödinger equation for periodic potentials I
 - (a) Show that for a periodic potential with period a, V(x + a) = V(x), the Hamiltonian commutes with the translation operator T_a , $[T_a, H] = 0$. The operator T_a translates the whole system by a distance a and is defined by

$$T_a\psi(x) = \psi(x+a).$$

What is the consequence of this commutator relation?

(b) Show that from part (a) it follows that the solutions $\psi(x)$ of the Schrödinger equation for a periodic potential must be of the form

$$\psi(x) = e^{ikx}u(x) \quad \text{with} \quad u(x) = u(x+h) \tag{1}$$

and a real-valued parameter k. This relation is called the *Bloch theorem*.

Hint: Use the fact that the translation operator does not change the norm of the wavefunction. What do you know about the operator product $T_a T_{a'}$?

(c) Consider a periodic system where the potential is so weak that you can neglect it — *i.e.* you can assume V(x) = 0, but the wavefunctions are still constrained to have the form given by equation (1). Calculate the eigenenergies of the system in dependence of the parameter k. Make a sketch of E(k) in the region $\left[-\frac{\pi}{a}, +\frac{\pi}{a}\right]$. Why is it sufficient to constrain k to this region?

Hint: As u(x + a) = u(x), the function u(x) can be expressed as a Fourier series,

$$u(x) = \sum_{n=-\infty}^{\infty} u_n e^{iG_n x}$$
, with $G_n = \frac{2\pi}{a}n$.

22. The Schrödinger equation for periodic potentials II

Now consider a one-dimensional quantum system in the periodic potential

$$V(x) = -V_0 \sum_{n=-\infty}^{+\infty} \delta(x - na), \quad V_0 > 0.$$

Derive an equation for the energy eigenvalues of the problem, and show how the equation can be solved graphically. Are there solutions for any value of k? Try to make a sketch of the function E(k).

Hint: Use the usual Ansatz for the wavefunction $\psi(x)$ in the interval [0, a]. Then use the following conditions to determine the unknowns:

- Contituity of $\psi(x)$ at x = 0.
- The jump in $\psi'(x)$ at x = 0 (see problem 14 (b)).
- The Bloch theorem (equation (1) above).

- 23. A basis of angular momentum eigenstates is given by $\{|\tau lm_z\rangle\}$ $(l, m_z$ quantum numbers of L^2 and L_z ; τ is a set of quantum numbers, which belong to a set of self-adjoint operators T commuting with all components of \vec{L} . τ, l, m form a complete set of quantum numbers).
 - (a) In which of the states $|\tau lm_z\rangle$ with fixed *l* does the uncertainty of the components L_x and L_y have the smallest value? Calculate this value.
 - (b) Are there states in the considered state space, where all components of the concerning angular momentum have a 'sharp value' (*i.e.* no uncertainity)?
 - 24. Consider an arbitrary physical system, whose four-dimensional state space is spanned by the four eigenstates $|l, m_z\rangle$ of the operators L^2 and L_z $(l = 0, 1; -l < m_z < l)$. The eigenvalues are $l(l+1)\hbar^2$ and $m_z\hbar$, respectively, so that

$$L_{\pm}|l,m_{z}\rangle = \hbar\sqrt{l(l+1) - m_{z}(m_{z}\pm 1)}|l,m_{z}\pm 1\rangle$$

$$L_{+}|l,l\rangle = L_{-}|l,-l\rangle = 0.$$
(2)

- (a) Write the eigenstates $|l, m_x\rangle$ of L^2 and L_x in terms of states $|l, m_z\rangle$.
- (b) Consider a system in the normalized state (notation $|l, m_z\rangle$)

$$|\Psi\rangle = \alpha |1,1\rangle + \beta |1,0\rangle + \gamma |1,-1\rangle + \delta |0,0\rangle.$$

What are the probabilities, that measurements of L^2 and L_z give $2\hbar^2$ and \hbar , respectively? Calculate also the average value of L_z , when the system is in the state $|\Psi\rangle$, and the probabilities of each possible value this observable can have.