21. The Schrödinger equation for periodic potentials I
(a) Show that for a periodic potential with period $a, V(x+a)=V(x)$, the Hamiltonian commutes with the translation operator $T_{a},\left[T_{a}, H\right]=0$. The operator $T_{a}$ translates the whole system by a distance $a$ and is defined by

$$
T_{a} \psi(x)=\psi(x+a)
$$

What is the consequence of this commutator relation?
(b) Show that from part (a) it follows that the solutions $\psi(x)$ of the Schrödinger equation for a periodic potential must be of the form

$$
\begin{equation*}
\psi(x)=e^{i k x} u(x) \text { with } u(x)=u(x+h) \tag{1}
\end{equation*}
$$

and a real-valued parameter $k$. This relation is called the Bloch theorem.
Hint: Use the fact that the translation operator does not change the norm of the wavefunction. What do you know about the operator product $T_{a} T_{a^{\prime}}$ ?
(c) Consider a periodic system where the potential is so weak that you can neglect it i.e. you can assume $V(x)=0$, but the wavefunctions are still constrained to have the form given by equation (1). Calculate the eigenenergies of the system in dependence of the parameter $k$. Make a sketch of $E(k)$ in the region $\left[-\frac{\pi}{a},+\frac{\pi}{a}\right]$. Why is it sufficient to constrain $k$ to this region?
Hint: As $u(x+a)=u(x)$, the function $u(x)$ can be expressed as a Fourier series,

$$
u(x)=\sum_{n=-\infty}^{\infty} u_{n} e^{i G_{n} x}, \text { with } G_{n}=\frac{2 \pi}{a} n
$$

22. The Schrödinger equation for periodic potentials II

Now consider a one-dimensional quantum system in the periodic potential

$$
V(x)=-V_{0} \sum_{n=-\infty}^{+\infty} \delta(x-n a), \quad V_{0}>0
$$

Derive an equation for the energy eigenvalues of the problem, and show how the equation can be solved graphically. Are there solutions for any value of $k$ ? Try to make a sketch of the function $E(k)$.
Hint: Use the usual Ansatz for the wavefunction $\psi(x)$ in the interval $[0, a]$. Then use the following conditions to determine the unknowns:

- Contituity of $\psi(x)$ at $x=0$.
- The jump in $\psi^{\prime}(x)$ at $x=0$ (see problem $14(\mathrm{~b})$ ).
- The Bloch theorem (equation (1) above).

23. A basis of angular momentum eigenstates is given by $\left\{\left|\tau l m_{z}\right\rangle\right\}\left(l, m_{z}\right.$ quantum numbers of $L^{2}$ and $L_{z} ; \tau$ is a set of quantum numbers, which belong to a set of self-adjoint operators $T$ commuting with all components of $\vec{L} . \tau, l, m$ form a complete set of quantum numbers).
(a) In which of the states $\left|\tau l m_{z}\right\rangle$ with fixed $l$ does the uncertainty of the components $L_{x}$ and $L_{y}$ have the smallest value? Calculate this value.
(b) Are there states in the considered state space, where all components of the concerning angular momentum have a 'sharp value' (i.e. no uncertainity)?
24. Consider an arbitrary physical system, whose four-dimensional state space is spanned by the four eigenstates $\left|l, m_{z}\right\rangle$ of the operators $L^{2}$ and $L_{z}\left(l=0,1 ;-l<m_{z}<l\right)$. The eigenvalues are $l(l+1) \hbar^{2}$ and $m_{z} \hbar$, respectively, so that

$$
\begin{align*}
L_{ \pm}\left|l, m_{z}\right\rangle & =\hbar \sqrt{l(l+1)-m_{z}\left(m_{z} \pm 1\right)}\left|l, m_{z} \pm 1\right\rangle  \tag{2}\\
L_{+}|l, l\rangle & =L_{-}|l,-l\rangle=0 .
\end{align*}
$$

(a) Write the eigenstates $\left|l, m_{x}\right\rangle$ of $L^{2}$ and $L_{x}$ in terms of states $\left|l, m_{z}\right\rangle$.
(b) Consider a system in the normalized state (notation $\left|l, m_{z}\right\rangle$ )

$$
|\Psi\rangle=\alpha|1,1\rangle+\beta|1,0\rangle+\gamma|1,-1\rangle+\delta|0,0\rangle .
$$

What are the probabilities, that measurements of $L^{2}$ and $L_{z}$ give $2 \hbar^{2}$ and $\hbar$, respectively? Calculate also the average value of $L_{z}$, when the system is in the state $|\Psi\rangle$, and the probabilities of each possible value this observable can have.

