33. Consider a three-dimensional harmonic oscillator, which is given by the Hamiltonian

$$
H=\sum_{i=1}^{3} H_{i}, \quad H_{i}=\frac{1}{2 m}\left(P_{i}^{2}+m^{2} \omega^{2} X_{i}^{2}\right)
$$

where X_{i} and P_{i} are the position and momentum operators in x, y, z-direction.
Express H in terms of the ladder operators a_{i}, a_{i}^{\dagger} and derive an expression for the energy eigenvalues E_{n} in terms of the operators $N_{i}:=a_{i}^{\dagger} a_{i}$. What is the degeneracy of the state E_{n} ? How can one generate an arbitrary quantum state out of the vacuum state $|0\rangle$?
34. For the three-dimensional harmonic oscillator as defined in problem 33, express the angular momentum operator $\mathbf{L}=\mathbf{R} \times \mathbf{P}$ in terms of the ladder operators.
(a) Show that

$$
L_{z}=\hbar\left(a_{+}^{\dagger} a_{+}-a_{-}^{\dagger} a_{-}\right) \text {and } L_{ \pm}= \pm \hbar \sqrt{2}\left(a_{\mp} a_{z}^{\dagger}-a_{ \pm}^{\dagger} a_{z}\right)
$$

with the definitions

$$
L_{ \pm}:=\left(L_{x} \pm i L_{y}\right) \text { and } a_{ \pm}^{\dagger}:=\frac{1}{\sqrt{2}}\left(a_{x}^{\dagger} \pm i a_{y}^{\dagger}\right), a_{ \pm}:=\frac{1}{\sqrt{2}}\left(a_{x} \mp i a_{y}\right) .
$$

(b) Express the Hamiltonian H in terms of the ladder operators $a_{ \pm}^{\dagger}, a_{ \pm}, a_{z}^{\dagger}$ and a_{z}.
(c) How can you generate an arbitrary state out of the vacuum state $|0\rangle$ using $a_{ \pm}^{\dagger}$ and a_{z}^{\dagger} ? Is this state also an eigenstate of L_{z} ? If yes, what is the corresponding eigenvalue?
35. For the one-dimensional harmonic oscillator, calculate the matrix representation of the operators x, x^{2}, p and p^{2} in the basis of its eigenfunctions. Use your results to calculate $(\Delta x)^{2}(\Delta p)^{2}$ for the three lowest states.
36. (a) Formulate the Schrödinger equation of a linear (1-dim.) harmonic oscillator in momentum representation. Describe the appropriate eigenvalues E_{n} and eigenfunction $\tilde{u}_{n} \equiv\langle p \mid n\rangle$.
(b) A state vector of this harmonic oscillator is given to a certain point of time by a linear combination of his energy eigenstates $|0\rangle,|1\rangle$

$$
|\psi\rangle=\sqrt{\frac{2}{3}}|0\rangle-i \frac{1}{\sqrt{3}}|1\rangle .
$$

Calculate for this point of time uncertainty relation $\Delta x \cdot \Delta p$.

