37. A particle of mass m and charge q moves in a magnetic field $\mathbf{B} = B \mathbf{e}_z$. Determine the energy eigenvalues and the corresponding eigenvectors.

Hint: Express the Hamiltonian using the conjugate momenta Π_x and Π_y . Determine the commutator relations of these momentum operators. Now introduce ladder operators like you did for the harmonic oscillator.

- 38. A spin $s = \frac{3}{2}$ is determined by a state $|\chi\rangle$, which possesses the expectation value $+\frac{\hbar}{2}$ for the z-component of the spin.
 - a. Can we conclude, that the vector $|\chi\rangle$ has to be the eigenvector of S_z ?
 - b. Will the conclusion of (a.) be changed, if we assume additionally, that expectation values of S_x and S_y are zero in the state $|\chi\rangle$?
- 39. A electron is located in the magnetic field \vec{B} , which is given by his vector potential \vec{A} .
 - a. How does the time-dependent Schrödinger equation look like for the 2-component state function $\hat{\psi}(\vec{r},t)$ of the electron in the $\{\vec{r}m_s\}$ -representation?
 - b. Show for homogenous magnetic fields, that the dynamics of the spin can be separated from the dynamics of the 'path movement' by the ansatz

$$\hat{\psi}(\vec{r},t) = \begin{bmatrix} \psi(\vec{r}+,t) \\ \psi(\vec{r}-,t) \end{bmatrix} = \phi(\vec{r},t)\hat{\chi}(t), \qquad \hat{\chi}(t) \begin{bmatrix} \chi(+,t) \\ \chi(-,t) \end{bmatrix}$$

Describe the equations of motion of the state function $\phi(\vec{r}, t)$ and the spinor $\hat{\chi}(t)$.

40. Consider a system of two spins with $S_1 = S_2 = \frac{1}{2}$. The state space in the $|S_{1z}, S_{2z}\rangle$ representation is $\{| + +\rangle, | + -\rangle, | - +\rangle, | - -\rangle\}$. In the $|S, S_z\rangle$ -representation (total spin $\vec{S} = \vec{S_1} + \vec{S_2}$) there are three triplett-state with S = 1 and some singulett-state with S = 0.
What will arise for the singulett- and triplett-state with $S_z = 0$ if we change to the $|S_{1x}, S_{2x}\rangle$ representation?