37. A particle of mass m and charge q moves in a magnetic field $\mathbf{B}=B \mathbf{e}_{z}$. Determine the energy eigenvalues and the corresponding eigenvectors.
Hint: Express the Hamiltonian using the conjugate momenta Π_{x} and Π_{y}. Determine the commutator relations of these momentum operators. Now introduce ladder operators like you did for the harmonic oscillator.
38. A spin $s=\frac{3}{2}$ is determined by a state $|\chi\rangle$, which possesses the expectation value $+\frac{\hbar}{2}$ for the z-component of the spin.
a. Can we conclude, thet the vector $|\chi\rangle$ has to be the eigenvector of S_{z} ?
b. Will the conclusion of (a.) be changed, if we assume additionally, that expectation values of S_{x} and S_{y} are zero in the state $|\chi\rangle$?
39. A electron is located in the magnetic field \vec{B}, which is given by his vector potential \vec{A}.
a. How does the time-dependent Schrödinger equation look like for the 2 -component state function $\hat{\psi}(\vec{r}, t)$ of the electron in the $\left\{\vec{r} m_{s}\right\}$-representation?
b. Show for homogenous magnetic fields, that the dynamics of the spin can be separated from the dynamics of the 'path movement' by the ansatz

$$
\hat{\psi}(\vec{r}, t)=\left[\begin{array}{c}
\psi(\vec{r}+, t) \\
\psi(\vec{r}-, t)
\end{array}\right]=\phi(\vec{r}, t) \hat{\chi}(t), \quad \hat{\chi}(t)\left[\begin{array}{l}
\chi(+, t) \\
\chi(-, t)
\end{array}\right]
$$

Describe the equations of motion ofr the state function $\phi(\vec{r}, t)$ and the spinor $\hat{\chi}(t)$.
40. Consider a system of two spins with $S_{1}=S_{2}=\frac{1}{2}$. The state space in the $\left|S_{1 z}, S_{2 z}\right\rangle$ representation is $\{|++\rangle,|+-\rangle,|-+\rangle,|--\rangle\}$. In the $\left|S, S_{z}\right\rangle$-representation (total spin $\vec{S}=\vec{S}_{1}+\vec{S}_{2}$) there are three triplett-state with $S=1$ ans one singulett-state with $S=0$. What will arise for the singulett- and triplett-state with $S_{z}=0$ if we change to the $\left|S_{1 x}, S_{2 x}\right\rangle$ representation?

