39. Mind that problem no. 39 from the previous exercise has been delayed to this exercise.
40. The magnetic moment of an electron is measured by the operator

$$
\vec{M}=\frac{e}{2 m c}(\vec{L}+2 \vec{S})
$$

The expectation value of M_{z} in the state $\left|j, j_{z}\right\rangle$ can be written in the form

$$
\left\langle M_{z}\right\rangle=\frac{e \hbar}{2 m c} g_{L} j_{z}
$$

where g_{L} is called the Landé factor. Calculate g_{L} of the states $\left|\frac{5}{2}, \frac{3}{2}\right\rangle$ and $\left|\frac{3}{2}, \frac{3}{2}\right\rangle$.
42. The Hamiltonian of a system of two spins $s=\frac{1}{2}$ is given by

$$
H_{S}=\frac{a}{\hbar}\left(S_{z}^{(1)}+S_{z}^{(2)}\right)+\frac{4 b}{\hbar^{2}} \mathbf{S}^{(1)} \mathbf{S}^{(2)}
$$

where $a, b>0$ and $\mathbf{S}^{(j)}$ is the spin operator of spin number j. Calculate the eigenvalues of H_{S} and express the corresponding eigenvectors in the basis of the eigenstates

$$
\left|\frac{1}{2} \frac{1}{2} m_{1} m_{1}\right\rangle=:\left|m_{1} m_{2}\right\rangle=\left|m_{1}\right\rangle^{(1)}\left|m_{2}\right\rangle^{(2)}
$$

of $\left(\mathbf{S}^{(1)}\right)^{2},\left(\mathbf{S}^{(2)}\right)^{2}, S_{z}^{(1)}$ and $S_{z}^{(2)}$. For which relation a / b are the energies degenerate?
43. (a) Express the eigenvectors of the components S_{x} and S_{y} of the spin operator \mathbf{S} of a spin $s=\frac{1}{2}$ in the basis of the eigenstates of S_{z}.
(b) A spin $s=\frac{1}{2}$ is in the state

$$
|\Psi\rangle=\frac{1}{\sqrt{2}}|+\rangle+\frac{1+i}{2}|-\rangle
$$

at a certain time. Find the direction in space for which the projection of the spin has zero uncertainity.
Hint: Use the fact that the uncertainity of an operator A in a state $|\Psi\rangle$ is zero, if and only if $|\Psi\rangle$ is an eigenvector of A. Decompose the projection of the spin \mathbf{s} onto an arbitrary direction e into its components, then replace σ_{x} and σ_{y} by operators more suitable to your problem...

