44. A particle with spin $s=\frac{1}{2}$ is moving in the potential

$$
V(x)=\left\{\begin{array}{ll}
V_{0} \sigma_{z} & x>0 \\
0 & x \leq 0
\end{array} .\right.
$$

A monochromatic, polarized stream of particles is coming from $-\infty$ and moving in the direction of the positive x-axis. All particles are in the eigenstate of σ_{x} corresponding to the eigenvalue 1 .
(a) What is the general expression for the wave function of those particles?
(b) Calculate the general solution for the transmitted and reflected waves.
(c) What are the border conditions at $x=0$? Give a general expression for the probability amplitudes of parts a) and b).
(d) When is the reflected wave an eigenstate of σ_{x} ? When is the transmitted wave an eigenstate of σ_{x} ?
45. Repeat the algebraic treatment of the quantum mechanical harmonic oscillator

$$
H=\frac{1}{2 m} P^{2}+\frac{1}{2} m \omega^{2} X^{2} .
$$

(a) Calculate the commutator $[P, X]$. What is $[P, H]$ and $[X, H]$?
(b) Introduce the ladder operators a^{\dagger}, a. What is their commutator? Calculate $[a, H]$ and $\left[a^{\dagger}, H\right]$!
(c) If $|\lambda\rangle$ is an eigenstate of H, what can you conclude for $a|\lambda\rangle$ and $a^{\dagger}|\lambda\rangle$?
(d) Express the Hamiltonian in terms of the ladder operators.
(e) What are the energy eigenvalues of the harmonic oscillator?
(f) Calculate the action of the ladder operators onto a state $|\lambda\rangle$. (Up to now, you know that $a|\lambda\rangle=c_{\lambda}|\lambda-\hbar \omega\rangle$ and $a^{\dagger}|\lambda\rangle=c_{\lambda}^{\prime}|\lambda+\hbar \omega\rangle$ - i.e. you still have to calculate the constants c_{λ} and $\left.c_{\lambda}^{\prime}\right)$.
(g) How can you generate an arbitrary state out of the "vacuum state" $|0\rangle$?
(h) Interpret your results! Why is the form of the Hamiltonian you derived in part (d) called the "particle number representation"?
46. A particle is in the $j=1$ state of the angular momentum operator \mathbf{J}^{2}. Calculate the matrix representations of the operators $J_{z}, J_{+}, J_{-}, J_{x}, J_{y}$ and \mathbf{J}^{2} in the basis $\left|1, j_{m}\right\rangle$ of the eigenstates of \mathbf{J}^{2}, J_{z}.
47. A particle moves in the spherically symmetric potential

$$
V(r)=-\frac{\hbar^{2}}{2 m} \Omega \delta(r-R)
$$

(a) Derive an equation that determines the bound states.
(b) Solve the equation for $l=0$. Under what condition does at least one bound state exist?

