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Abstract

In this bachelor thesis excitations in strongly interacting dipolar Bose gases, that are trapped in coupled
2D-layers, are investigated. Equations of motion are derived using a least-action principle equivalent to the
Schrödinger equation. We solve the equations of motion to determine the density-density linear response
matrix in a very general way for inhomogeneous multi-component systems. This result is a generalisation
of the work of Clements et al. [Phys. Rev. B 53.18, 12253 (1996)] for multi-component systems. We
discuss how the general formalism can be applied to homogeneous systems and how numerical evaluations
can be performed for them. Based on the ground state results from Martin Hebenstreit [Bachelor thesis,
JKU Linz, 2013], obtained with the hypernetted-chain Euler-Lagrange method, numerical evaluations
of the density-density response matrix are performed for one- and bilayer systems, that have either a
polarisation perpendicular to the layers or a tilted polarisation. We find systems with tilted dipoles, that
are about to solidify in the direction orthogonal to the polarisation of the system.

Zusammenfassung

In dieser Bachelorarbeit werden stark wechselwirkende dipolare Bose-Systeme in gekoppelten 2D-Schichten
untersucht. Bewegungsgleichungen werden unter Verwendung des Prinzips der kleinsten Wirkung äquiv-
alent zur Schrödinger-Gleichung abgeleitet. Wir lösen die Bewegungsgleichungen um die Dichte-Dichte
„linear response“-Matrix in einer sehr allgemeinen Form für inhomogene mehrkomponentige Systeme zu
bestimmen. Dieses Ergebnis ist eine Verallgemeinerung der Arbeit von Clements et al. [Phys. Rev. B
53.18, 12253 (1996)] für mehrkomponentige Systeme. Wir diskutieren, wie der allgemeine Formalismus auf
homogene Systeme angewandt und numerische Auswertungen durchgeführt werden können. Basierend auf
den Grundzustands-Ergebnissen von Martin Hebenstreit [Bachelorarbeit, JKU Linz, 2013], die mithilfe
der „hypernetted-chain Euler-Lagrange“-Methode ermittelt wurden, werden numerische Auswertungen
der Dichte-Dichte ‘response’-Matrix für ein- und zweischichtige Systeme durchgeführt, die entweder eine
Polarisation normal zu den Ebenen oder eine gekippte Polarisation aufweisen. Dabei finden wir Systeme
mit gekippten Dipolen vor, die sich in der Richtung normal zur Polarisation beinahe verfestigen.
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1 Introduction

This bachelor thesis deals with excitations in dipolar boson systems consisting of multiple 2D-layers
(see figure 1.1) at low temperatures, which is equivalent to multi-component Bose systems, if we allow
no tunnelling or hopping between the layers. Experiments of this kind can nowadays be performed in
laboratories, for example see [Aik+12], [Lah+07], [Lu+11], [Stu+12] and [Tak+12]. For more details
about dipolar quantum gases see the review article [Bar+12].

In the first part of this work we derive a general formalism for excitations in inhomogeneous systems
of multiple particle types and later carry out numerical evaluations, where each 2D-layer is treated as
a different particle type. This approach has the advantage, that our system is homogeneous, which
makes computations both easier and faster. An alternative would be a calculation for an inhomogeneous
one-component 3D-system.

Two parallel aligned dipoles interact via the pair interaction potential

vprq “
1

4π

˜

µ2

r3 ´ 3 pr ¨ µq
2

r5

¸

, (1.1)

where µ is a generalised dipole moment, such that for the magnetic case µ “ ?µ0µmag with the perme-
ability of free space µ0 and r is the vector connecting the two interacting dipoles. For dipole moments
µ “ µ psinpϑqêx ` cospϑqêzq (see figure 1.1) the intra- and inter-layer pair potential along the x- and the
y-axis is shown in figure 1.2.

Within this bachelor thesis the results of Clements, Krotscheck, and Tymczak [CKT96] were generalised
for multi-component systems by performing the whole derivation again including each detail and apply-
ing the multi-component adaptations. Also the source code necessary for the numeric evaluations was
implemented as a part of this work.

In the following chapter 2 we will derive equations of motion for our systems analogous to the work of
Saarela, Apaja, and Halinen [SAH04] using a variational principle as it was suggested by Kerman and
Koonin [KK76].

Afterwards we will solve the equations of motion in chapter 3 based on the work of [CKT96] and Clements
et al. [Cle+93] to obtain an expression for the density-density response function. The main difference
between the referenced investigations and the present thesis is the generalisation from single- to multi-
component systems, which requires a new reasonable notation, as for example the response function is
no longer a scalar, but a matrix.

Finally in chapter 4 we perform numerical evaluations of the density-density response matrix for bilayer
Bose gases. We especially focus on anisotropic, but homogeneous bilayer systems, where the dipole
moments of the particles are not perpendicular to the layers. The calculation of the response function
requires knowledge of the ground state, which is provided from the hypernetted-chain Euler-Lagrange
computations of Martin Hebenstreit [Heb13].
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1 Introduction

d
ϑ

Figure 1.1: A sketch of the experimental setup, where the horizontal lines represent the 2D-layers parallel
to the xy-plane with a distance of d. The small arrows illustrate the single bosons with the
direction of their dipole moments µ “ µ psinpϑqêx ` cospϑqêzq.
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Figure 1.2: These are the pair interaction potentials in units of the characteristic energy E0 for two
dipoles in the same (blue) or in neighbouring layers (red) as a function of their distance r,
when projected on the xy-plain in units of the characteristic length r0. The solid lines show
the potential for two dipoles in the xz-plain and the dashed lines for two dipoles in the yz-
plain. Note that the dipoles are all aligned in parallel in the xz-plain, which breaks the line
symmetry of the inter-layer interaction along the x-axis (see the red solid curve). The intra-
layer interaction is always proportional to r´3, which means that it is repulsive. In contrast
the inter-layer interaction always has a minimum, around which dipoles attract each other
between the layers. Note that in the direction, in which dipoles are tilted, the inter-layer
interaction can also be repulsive (see again the red solid curve).
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2 Deriving the equations of motion

In this chapter we derive equations of motion for our multi-component system, which contain density
fluctuations and external perturbations, so that we can determine the linear response matrix between
them in the following chapter.

2.1 Statement of the problem

The ground state of our system can be described using the time-independent Hamiltonian

pH0pRq :“ ´
ÿ

α

Nα
ÿ

i

~2

2mα
∆α,i ` V pRq. (2.1)

With the small Greek letters α, β, γ, η, ϑ and κ certain particle types are labelled and Nα stands for the
number of particles of type α. One has to imagine that the particles within a type α are numbered with
i P t1, . . . , Nαu (although any two of them could be exchanged without any consequences) and so the
vector rα,i indicates the position of a certain particle in our system. So the double sum in equation (2.1)
is simply a sum over all particles. Whenever the vector R is used in this work, the coordinates of all
particles are meant. V pRq stands for an arbitrary potential depending on the coordinates of the particles.

As the problem, we deal with, is of course a time-dependent problem we start with defining a perturbed
Hamiltonian [LL77, p. 133]

pHpR, tq :“ pH0pRq ` δ pHpR, tq. (2.2)

The explicit time-dependent perturbation of our system is defined as [CKT96]

δ pHpR, tq :“
ÿ

α

Nα
ÿ

i“1
Uext,αprα,i, tq . (2.3)

The function Uext,αpr, tq is the external potential a particle of type α ‘feels’ at a position r and time t.

We proceed with an ansatz for the wave function ψpR, tq of our system. To get an idea how this can be
done, we take inspiration from the Jastrow-ansatz for the ground state theory [SAH04, p. 132] and define
the complex-valued excitation operator [SAH04, p. 163]

δUpR, tq :“
ÿ

α

ÿ

i

δuαprα,i, tq `
1
2
ÿ

α,β

ÿ1

i,j

δuαβprα,i, rβ,j , tq ` . . . (2.4)

as the fluctuations of the correlation functions. In equation (2.4) the prime at the second sum means that
the addend for the case α “ β and i “ j is left out. In contrast to the Jastrow-form of a homogeneous
ground state we also need the fluctuations of the one-body correlations δuα here, as in the theory of
excitations there will most likely be a breaking of the translational invariance. [SAH04, p. 163] Of course
also correlations of higher order – e. g. triplet correlations δuαβγ – could be included in δU like it was done
by Campbell and Krotscheck [CK10] for one-component homogeneous systems, but as the derivations
presented in this work are tedious enough, we will just treat one-body and pair correlations.
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2 Deriving the equations of motion

We assume to know the normalised wave function ψ0pRq, which is the result of the ground state calculation
and make the ansatz [SAH04, p. 163]

ψpR, tq :“ e´iω0te
1
2 δUpR,tq

a

N ptq
ψ0pRq (2.5)

for the wave function of our excited system, where E0 “ ~ω0 is the ground state energy, such that the
time-independent Schrödinger equation pH0ψ0pRq “ E0ψ0pRq holds and N ptq ensures that ψpR, tq is
again normalised, so one gets [SAH04, p. 163]

N ptq “
〈
ψ0pRq

ˇ

ˇ

ˇ
eRe δUpR,tq

ˇ

ˇ

ˇ
ψ0pRq

〉
. (2.6)

So up to now have defined our system and the actual target of all the following calculation is to solve
the excitations δU caused by the external perturbation δ pH. In the limit δ pH Ñ 0 also δU vanishes and
therefore the excited wave function ψ becomes identical to ψ0.

2.2 The variational principle

The next step on our way to the equations of motion is to apply a variational principle as it is also
described by Kerman and Koonin [KK76]. For that reason we define

L rψ,ψ˚s ptq :“
〈
ψpR, tq

ˇ

ˇ

ˇ

ˇ

pHpR, tq ´ i~ B
Bt

ˇ

ˇ

ˇ

ˇ

ψpR, tq

〉
, (2.7)

which is quite similar to the Lagrangian from classical mechanics, as we can define an action functional

S rψ,ψ˚s :“
ż

dt L rψ,ψ˚s ptq, (2.8)

such that the many-body Schrödinger equation is equivalent to the least-action principle

δS rψ,ψ˚s

δψpR, tq
“ 0. (2.9)

Before we apply the least-action principle, we reformulate the Lagrangian for our specific problem as it
was also done in [SAH04]. In the following the parameters are omitted to increase readability. First we
carry out the time derivative of the trivial time dependence e´iω0t of ψ to obtain

L “

〈
ψ0

ˇ

ˇ

ˇ

ˇ

ˇ

e
1
2 δU

˚

?
N

ˆ

pH´ E0 ´ i~
B

Bt

˙

e
1
2 δU

?
N

ˇ

ˇ

ˇ

ˇ

ˇ

ψ0

〉
. (2.10)

Next we insert the Hamiltonian from definition (2.2) and make use of the ground state Schrödinger
equation E0ψ0 “ pH0ψ0, which enables us to write a commutator.

L “

〈
ψ0

ˇ

ˇ

ˇ

ˇ

ˇ

e
1
2 δU

˚

N

”

pH0, e
1
2 δU

ı

´ i~
e

1
2 δU

˚

?
N

B

Bt

e
1
2 δU

˚

?
N

`
eRe δU

N
δ pH

ˇ

ˇ

ˇ

ˇ

ˇ

ψ0

〉
(2.11)

After some further steps that can be found in more detail in [Saa08], we obtain the form

L “

〈
ψ0

ˇ

ˇ

ˇ

ˇ

ˇ

eRe δU

N

˜

ÿ

β

Nβ
ÿ

j

~2

8mβ
|∇β,jδU |2 `

~
2 Im δ 9U ` δ pH

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ψ0

〉
. (2.12)
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2 Deriving the equations of motion

The presented procedure until now is basically identical to the approach of Saarela, Apaja, and Halinen
[SAH04] for the one-component case, but to proceed we have to think about a suitable notation for multi-
component systems. Hereafter quantities depending on n particle types α “ pα1, . . . , αnq will occur like
the n-body correlation function δuαpr1, . . . , rn, tq. We introduce a function nβpαq that indicates the
number of α-components that are equal to beta, e. g. for α ‰ β and α “ pα, β, βq one has nαpαq “ 1
and nβpαq “ 2. Most functions depending on α also have n coordinate-parameters r1, . . . , rn, which
represent the positions of n distinct particles – rj gives the coordinate of a particle with type αj . As
an abbreviation for the n position-parameters r1, . . . , rn we will use σα. It is also very common to have
an integral over the coordinates of all particles except of those, whose positions are included in σα. We
write these integrals as

ş

dτα, so if one has a function fpRq and an integral

I :“
ż

dτα fpRq, (2.13)

one also has I “ Ipσαq, so I only depends on the coordinates σα.

Now we are ready to apply the least-action principle and so we require δS{δ pδuαpσα, tqq
!
“ 0, which

means that the action is minimised with respect to a general n-correlation function δuαpσα, tq. [SAH04]
This approach is very elegant, as it leads us to the equation(s) of motion (for each possible α)

ż

dτα

#

ÿ

j

~2

4mαj

∇j ¨
`

|ψ|2∇jδU
˘

` |ψ|2
ˆ

i~
2 δ

9U ´ δ pH´
〈
ψ

ˇ

ˇ

ˇ

ˇ

i~
2 δ

9U ´ δ pH
ˇ

ˇ

ˇ

ˇ

ψ

〉˙+
“ 0 (2.14)

and can be used for correlation functions of any order. The summation index j in (2.14) should run
through the set of particles, whose positions would be labelled with σα.

2.3 Continuity equations

Although equation (2.14) is already a valid form of our equations of motion, we need to bring it into a
more tractable form.

First of all we define the useful abbreviation

Πα :“
ź

β

Nβ !
pNβ ´ nβpαqq!

(2.15)

and the familiar n-body density [SAH04, p. 165]

ραpσα, tq :“ Πα
ż

dτα |ψpR, tq|2 (2.16)

analogue to the one-component case. If we use the ground state wave function ψ0 instead of ψ we can
also define the ground state density

ραpσαq :“ Πα
ż

dτα |ψ0pRq|
2. (2.17)

In fact we are interested in the fluctuations and so we make a linear expansion. [SAH04, p. 165]

ραpσα, tq “ Πα
ż

dτα |ψ0|
2 eRe δU〈
ψ0

ˇ

ˇ eRe δU
ˇ

ˇψ0
〉 “ Πα

ż

dτα |ψ0|
2 1`Re δU

1` 〈ψ0|Re δU |ψ0〉
`O

`

δU2˘

“ Πα
ż

dτα |ψ0|
2 p1`Re δUq p1´ 〈ψ0|Re δU |ψ0〉q `O

`

δU2˘ (2.18)

9



2 Deriving the equations of motion

This inspires the definition [SAH04, p. 165]

δρpσα, tq :“ Πα
ż

dτα |ψ0|
2 pδU ´ 〈ψ0| δU |ψ0〉q (2.19)

and so one has

ραpσα, tq “ ραpσαq `Re δρpσα, tq `O
`

δU2˘ . (2.20)

Please note that we defined the density fluctuations δρα complex-valued only for convenience, since it
fits perfectly into equation (2.14) – the real physical density fluctuations are Re δρα.

Now we play a similar game for the n-body current density, which can be defined as [Saa08]

jpphq
α pσα, tq :“ ~

2mα1i
Πα

ż

dτα pψ˚∇α1ψ ´ ψ∇α1ψ
˚q . (2.21)

As one can see the first component α1 of α plays a special role for the n-body current density. Analogous
to δρα we can define [SAH04, p. 165]

jαpσα, tq :“ ~
2mα1i

Πα
ż

dτα |ψ0pRq|
2∇α1δUpR, tq, (2.22)

whose real part is the first order-expansion of the real physical current density.

jpphq
α pσα, tq “ Re jαpσα, tq `O

`

δU2˘ (2.23)

A last necessary preparation is the definition [SAH04, p. 165]

Dαpσα, tq :“ 2
i~

Πα
ż

dτα |ψ0pRq|
2
´

δ pHpR, tq ´
〈
ψ0pR

1q

ˇ

ˇ

ˇ
δ pHpR1, tq

ˇ

ˇ

ˇ
ψ0pR

1q

〉¯
. (2.24)

From now on we omit the parameters σα and t to increase again readability, as the components of α and
σα always go hand in hand and we use the naming of the coordinates σα “ prα1 , . . . , rαnq implicitly,
such that

∇α “
ÿ

i

B

Bxα,i
êi. (2.25)

This enables us to rewrite equation (2.14) using the definitions (2.19), (2.22) and (2.24). [SAH04, p. 165]

∇α ¨ jα ` δ 9ρα “ Dα (2.26)
∇α ¨ jαβ `∇β ¨ jβα ` δ 9ραβ “ Dαβ (2.27)

One should note that equations (2.26) and (2.27) are continuity equations with driving terms Dα and
Dαβ , into which all the δ pH-dependence is collected. The first equation really turns into a continuity
equation, if the external perturbation vanishes.

10



3 Solving the equations of motion

In this chapter we will calculate the density-density linear response function from the equations of motion
derived in the previous chapter as the linear relationship between the density fluctuations Re δρα and
the perturbation Uext,α. The solution, that will be obtained, is also known as the CBF response function
in literature because of its first derivation done by Jackson [Jac73] within the theory of correlated basis
functions (CBF) [CKT96].

Before we proceed with our calculation we need again some definitions and therefore we start with defining
the n-body distribution function [SAH04, p. 165]

gα :“ ρα
ś

j

ραj
, (3.1)

which we need for the special cases n “ 2 and n “ 3.

gαβ “
ραβ
ραρβ

gαβγ “
ραβγ
ραρβργ

(3.2)

Another very simple definition we will use excessively is [SAH04, p. 170]

hαβ :“ gαβ ´ 1. (3.3)

We also introduce the so called tilde-notation for an arbitrary function fα [CKT96]

f̃α “
ź

j

?
ραjfα, (3.4)

but with the two exceptions

δρ̃α “
δρα
?
ρα

and j̃α “
jα
?
ρα

. (3.5)

The last definition we give for now is the static structure factor [CKT96]

Sαβ :“ δαβδprα ´ rβq ` h̃αβ (3.6)

and also a syntactic convention to combine sums and integrals is introduced.
ż

ÿ

α

fα “
ÿ

α

ż

dsrα fα (3.7)

After we are done with our preparations we start writing down the terms of the equations of motion (2.26)
and (2.27) explicitly using the definitions (2.19), (2.22) and (2.24). We start with the driving terms Dα

and Dαβ .

Dα “
2ρα
i~

˜

Uext,α `

ż

ÿ

β

ρβhαβUext,β

¸

“
2?ρα
i~

ż

ÿ

β

Sαβ rUext,β (3.8)

Dαβ “
2ραρβ
i~

˜

gαβ pUext,α ` Uext,βq `

ż

ÿ

γ

ργ pgαβγ ´ gαβqUext,γ

¸

(3.9)
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3 Solving the equations of motion

Soon it will become clear that representations using convolutions with Sαβ are very advantageous, so we
already did this for Dα. The current densities are

jα “
~ρα

2mαi

˜

∇αδuα `
ż

ÿ

β

ρβgαβ∇αδuαβ

¸

(3.10)

jαβ “
~ραρβ
2mαi

˜

gαβ∇α pδuα ` δuαβq `
ż

ÿ

γ

ργgαβγ∇αδuαγ

¸

(3.11)

and the one-body density

δρα “ ραδuα `

ż

ÿ

β

ραρβhαβδuβ `

ż

ÿ

β

ραρβgαβδuαβ `
1
2

ż

ÿ

β

ż

ÿ

γ

ραρβργpgαβγ ´ gβγqδuβγ . (3.12)

We can also reformulate the one-body density slightly using the static structure factor, which will help
us later.

δρ̃α “

ż

ÿ

β

˜

Sαβδũβ `
?
ρβgαβδũαβ `

1
2

ż

ÿ

γ

?
ραρβργpgαβγ ´ gβγqδũβγ

¸

(3.13)

Of course one could also write down δραβ explicitly, but this would give us a four-body density, which we
really want to avoid by all means. A different approach is to express the time derivative in terms of the
pair distribution function

δ 9ραβ “ gαβ pραδ 9ρβ ` ρβδ 9ραq ` ραρβ 9gαβ `O
`

δU2˘ , (3.14)

which suggests to subtract the first equation of motion (with appropriate coefficients) from the second as
it is also done in [CKT96], such that only the last addend of equation (3.14) remains. Before we carry
out this explicitly, we introduce some approximations in the following sections.

3.1 The convolution approximation

This section deals with the convolution approximation, that is well discussed in literature, [CKT96],
[Fee69], [SAH04, p. 170], but before can get started, we need again some new notation.

At this time we introduce diagrams, which will help us to drastically simplify bookkeeping in our formulas.
White circles denote external variables – in this case a variable is always connected to a particle type –
and if they are not labelled, the diagram represents the sum of all distinct permutations of the external
variables, which we usually call α, β and γ. A black circle indicates an internal variable, which comes
with a sum over all particle types, an integral over the coordinate and a coefficient, that is the density
corresponding to the particle type. A line that connects two circles α and β indicates the factor hαβ
and a grey triangle connecting the circles α, β and γ stands for the triplet correlation function Xαβγ .
[CKT96] An example would be

“

ż

ÿ

η

ρη

ż

ÿ

ϑ

ρϑ phαηhβϑXγηϑ ` hαηhγϑXβηϑ ` hβηhγϑXαηϑq . (3.15)

The diagrammatic notation is very useful to introduce the convolution approximation for the three-body
distribution function

gαβγ « ` ` ` ` ` ` ` . (3.16)

12



3 Solving the equations of motion

Clements, Krotscheck, and Tymczak [CKT96] point out, that this representation of gαβγ is exact, if we
know the exact triplet correlations Xαβγ , but as they are not known and we will insert approximations
taken from [Cle+93], we already call equation (3.16) the convolution approximation.

As we will need this expression quite often we define the part of gαβγ that is non-nodal in α as [CKT96]

Yαβγ :“
β γ

α

`
α β

γ

`
α β

γ

`
α γ

β

`
β γ

α

“ hαβhαγ `

ż

ÿ

η

ż

ÿ

ϑ

SβηSγϑ
?
ραρβργ

rXαηϑ. (3.17)

Lemma 1. The convolution of the static structure factor Sαη and the non-nodal part rYηβγ of gαβγ can
be expressed as

ż

ÿ

η

Sαη rYηβγ “
?
ραρβργ

ˆ

β γ

α

` ` ` ` `

˙

. (3.18)

Proof.
ż

ÿ

η

Sαη rYηβγ “
?
ραρβργ

#

Yαβγ `

ż

ÿ

η

ρηhαη

ˆ

β γ

η

`
η β

γ

`
η β

γ

`
η γ

β

`
β γ

η
˙

+

(3.19)

“
?
ραρβργ

ˆ

β γ

α

`
α β

γ

`
α β

γ

`
α γ

β

`
β γ

α

`
α β

γ

`
β γ

α

`
α γ

β

`
α β

γ

`
α β

γ
˙

(3.20)

Lemma 2. In the convolution approximation (given in equation (3.16)) on has

gαβγ “

ż

ÿ

η

Sαη rYηβγ
?
ραρβργ

` ` `
α γ

β

`
α β

γ

. (3.21)

Proof. This is an immediate implication of lemma 1, if one adds the missing diagrams from (3.16) to
(3.18) and solves for gαβγ .

Now it becomes very easy to simplify Dαβ , if we first insert Dα and then use lemma 2. In the end we
can again insert Dα for the convolution of Sγη and rUext,γ .

Dαβ “ gαβ pραDβ ` ρβDαq ` ραρβ

ż

ÿ

γ

2ργ
i~
tgαβγ ´ p1` hαβqp1` hαγ ` hβγquUext,γ

“ gαβ pραDβ ` ρβDαq ` ραρβ

ż

ÿ

γ

2
i~

ż

ÿ

η

Sγη rYηαβ
?
ραρβ

rUext,γ

“ gαβ pραDβ ` ρβDαq ` ραρβ

ż

ÿ

γ

YγαβDγ (3.22)

The next step is to eliminate the one-body correlation fluctuations δuα in favour of δρα from jα given in
equation (3.10), which can again be done by exploiting the convolution approximation. We use lemma 2

13



3 Solving the equations of motion

to replace gαβγ in equation (3.13) and then represent δρ̃α as a convolution with Sαβ .

δρ̃α “

ż

ÿ

β

˜

Sαβδũβ `
?
ρβgαβδũαβ `

ż

ÿ

γ

?
ραρβργ phαβ ` hαβhβγq δũβγ `

1
2

ż

ÿ

γ

ż

ÿ

η

Sαη rYηβγδũβγ

¸

“

ż

ÿ

β

Sαβ

˜

δũβ `

ż

ÿ

γ

?
ργgβγδũβγ `

1
2

ż

ÿ

γ

ż

ÿ

η

rYβγηδũγη

¸

(3.23)

Therefore we define [CKT96]

δṽα :“ δũα `

ż

ÿ

β

?
ρβgαβδũαβ `

1
2

ż

ÿ

β

ż

ÿ

γ

rYαβγδũβγ , (3.24)

such that one gets

δρ̃α “

ż

ÿ

β

Sαβδṽβ (3.25)

for the one-body density. This convolution can be easily inverted using the Ornstein-Zernike equation,
which states S´1

αβ “ δαβδprα ´ rβq ´ rXαβ , where Xαβ is the direct correlation function. [CKT96] Indeed
this explicit representation of S´1

αβ is often counterproductive, but we will need the direct correlation
function, especially in the following section.

Now we replace δuα from equation (3.10) using definition (3.24) and inserting δρ̃α from (3.25).

jα “
~ρα

2mαi

˜

∇α
1
?
ρα

ż

ÿ

β

S´1
αβ δρ̃β ´

ż

ÿ

β

ρβδuαβ∇αgαβ ´
1
2

ż

ÿ

β

ż

ÿ

γ

ρβργδuβγ∇αYαβγ

¸

(3.26)

3.2 The uniform limit approximation

An important approximation we introduce is the uniform limit approximation, discussed by Feenberg
[Fee69], where the limit gαβ Ñ 1 is analysed, which enables us to write the following. [CKT96]

δuαβ « δXαβ (3.27)
gαβ∇αδuαβ « ∇αδuαβ (3.28)

pgαβγ ´ gαβgαγq∇αδuαβ « hβγ∇αδuαγ (3.29)

Soon we will subtract the one-body equation of motion from the two-body equation of motion as previously
mentioned to avoid the four-body distribution function and so we prepare a term, that will appear in the
course of that process, using the uniform limit approximation.

Jαβ :“ ∇α ¨ pjαβ ´ gαβρβjαq (3.30)

“
~

2mαi
∇α ¨ ραρβ

˜

gαβ∇αδuαβ `
ż

ÿ

γ

ργpgαβγ ´ gαβgαγq∇αδuαγ

¸

(3.31)

“
~?ρβ
2mβi

∇α ¨ ρα∇α
1
?
ρα

ż

ÿ

γ

SβγδrXαγ (3.32)
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3 Solving the equations of motion

3.3 Reformulation of the second equation of motion

In the preceding sections we have introduced the necessary approximations and now it is time to finally
reformulate our two-body equation of motion (2.27) using the insights gained up to now. First we
subtract the one-body equation of motion (2.26) for both particle types α and β multiplied with gαβ and
the appropriate density from (2.27), which leads us to [CKT96]

Jαβ ` Jβα ` pρβjα ¨∇α ` ραjβ ¨∇αq gαβ ` ραρβ 9gαβ “ ραρβ

ż

ÿ

γ

YγαβDγ . (3.33)

The operators

pBρf :“
ż

ÿ

α

δf

δρα
δ 9ρα and pBuf :“

ż

ÿ

α

ż

ÿ

β

δf

δuαβ
δ 9uαβ (3.34)

can be used to express the time derivative of gαβ , as the hypernetted-chain equations provide a relationship
between gαβ , δρα and δuαβ . [CKT96]

9gαβ “
´

pBρ ` pBu

¯

gαβ (3.35)

The Ornstein-Zernike equation can be used to derive [CKT96]

pBρgαβ “

ż

ÿ

γ

Yγαβδ 9ρβ (3.36)

and also to rewrite the second part of the time derivative [CKT96]

?
ραρβpBugαβ “ pBug̃αβ “

ż

ÿ

γ

ż

ÿ

η

Sαγ

´

pBuδrXγη

¯

Sβη. (3.37)

In the uniform limit approximation δXαβ is identical to δuαβ , so the pBu-operator acting on δXαβ is identical
to the common time derivative. Therefore the final form of our second equation of motion in coordinate
space is given by

Jαβ ` Jβα ` pρβjα ¨∇α ` ραjβ ¨∇βq gαβ `
?
ραρβ

ż

ÿ

γ

ż

ÿ

η

Sαγδ
9
ĂXγηSβη “ ραρβ

ż

ÿ

γ

Yγαβ∇γ ¨ jγ . (3.38)

3.4 The Feynman states

We define the operator [CKT96]

pHα :“ ´ ~2

2mα

1
?
ρα
∇α ¨ ρα∇α

1
?
ρα

(3.39)

and use it to define the Feynman states ψα,n [Bij40], [Fey54] as the solutions of the generalised eigenvalue
problem [CKT96]

pHαψα,n “ ~ωn
ż

ÿ

β

Sαβψβ,n (3.40)
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3 Solving the equations of motion

with the orthonormalisation condition [CKT96]
ż

ÿ

α

ψ˚α,m
pHαψα,n “ ~ωmδmn. (3.41)

Next we define the states [CKT96]

φα,n :“ 1
~ωn

pHαψα,n “
ż

ÿ

β

Sαβψβ,n, (3.42)

that are orthonormal to the Feynman states.
ż

ÿ

α

ψ˚α,mφα,n “

ż

ÿ

α

ψα,mφ
˚
α,n “ δmn (3.43)

As it will be an useful abbreviation later, we introduce [CKT96]

ζα,n :“ φα,n ´ ψα,n
?
ρα

. (3.44)

Now we can use the states just defined to introduce the following expansions. [CKT96]

δρ̃α “
ÿ

m

rmptqφα,m (3.45)

δrXαβ “
ÿ

m,n

Xmnptqψα,mψβ,n (3.46)

rUext,α “
ÿ

m

umptqψα,m (3.47)

We insert equations (3.45)–(3.47) into the equations of motion and project them onto the Feynman states.
First this is done for the two addends of equation (2.26) where the procedure is straight forward and
gives

ż

ÿ

α

ψ˚α,mδ 9̃ρα “

ż

ÿ

α

ψ˚α,m
ÿ

n

9rnptqφα,n “ 9rmptq (3.48)
ż

ÿ

α

ψ˚α,m
Dα
?
ρα
“

ż

ÿ

α

ψ˚α,m
2
i~

ż

ÿ

β

Sαβ
ÿ

n

unptqψn,β “
2
i~

ÿ

n

unptq

ż

ÿ

α

ψ˚α,mφα,n “
2
i~
umptq. (3.49)

The term with the current density from equation (2.26) requires some tedious algebra, but finally results
in

ż

ÿ

α

ψ˚α,m
∇α ¨ jα
?
ρα

“ iωmrmptq `
i

2~
ÿ

p,q

XpqptqVpq,m (3.50)

with the definitions [CKT96]

Vpq,n :“
ż

ÿ

α

~2

2mα

ψ˚α,n
?
ρα
∇α ¨

?
ραWα,pq (3.51)

Wα,mn :“ φα,m∇αζα,n ` φα,n∇αζα,m `
?
ρα∇αZα,mn (3.52)

Zα,mn :“ 1
?
ρα

ż

ÿ

β

ż

ÿ

γ

φβ,mφγ,n rXαβγ . (3.53)
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3 Solving the equations of motion

A very similar approach is necessary to project the Feynman states on equation (3.38), which leads us to
[CKT96]

i~ 9Xmnptq´~pωm ` ωnqXmnptq “ ´i~
ż

ÿ

α

j̃α ¨W
˚
α,mn. (3.54)

Starting with equation (3.26) we can reformulate the right side of equation (3.54) as [CKT96]
ż

ÿ

α

j̃α ¨W
˚
α,mn “

ż

ÿ

α

~
2mαi

˜

?
ρα∇α

1
?
α

ÿ

p

rpptqψα,p ´
1
2
ÿ

p,q

XpqptqWα,pq

¸

¨W ˚
α,mn, (3.55)

which finally lets us eliminate the one-body current and write our equations of motion in Feynman space.
[CKT96]

i~ 9rmptq ´ ~ωmrmptq ´
1
2
ÿ

p,q

XpqptqVpq,m “ 2umptq (3.56)

i~ 9Xmnptq ´ ~pωm ` ωnqXmnptq ´
ÿ

p,q

Xpqptq

ż

ÿ

α

~2

4mα
W ˚

α,mn ¨Wα,pq “
ÿ

p

rpptqV
˚
mn,p (3.57)

3.5 The triplet correlations

Before heading towards the response function, we define the triplet correlations Xαβγ as a expansion into
Feynman states similar to as it is done by Clements et al. [Cle+93], such that one has

rXαβγ :“
ÿ

m,n,o

ψα,mψ
˚
β,nψ

˚
γ,o

Vmno
~pωm ` ωn ` ωoq

(3.58)

Vmno :“ ´
ż

ÿ

α

~2

2mα

?
ρα

´

φ˚α,m p∇αζα,nq ¨ p∇αζα,oq ` φα,n
`

∇αζ˚α,m
˘

¨ p∇αζα,oq (3.59)

` φα,o
`

∇αζ˚α,m
˘

¨ p∇αζα,nq
¯

.

Using the triplet correlations we can then write down Vst,n from equation (3.51) in terms of the Feynman
states, which gives

Vpq,n “

ż

ÿ

α

~2

2mα

ψ˚α,n
?
ρα
∇α ¨

?
ρα pφα,p∇αζα,q ` φα,q∇αζα,pq `

ωnVnst
ωn ` ωp ` ωq

. (3.60)

3.6 Removing the time dependence

The next problem we have to solve is removing the time dependence and the time derivatives from equa-
tions (3.56) and (3.57). For this reason we introduce the following representations of the decomposition
coefficients in frequency space. Note that we switch on the time dependence adiabatically. [SAH04,
p. 167]

rmptq “ lim
εÑ0`

eεt
ż dω

2π e´iωtrmpωq (3.61)

Xmnptq “ lim
εÑ0`

eεt
ż dω

2π e´iωtXmnpωq (3.62)

umptq “ lim
εÑ0`

eεt
ż dω

2π e´iωtumpωq (3.63)
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3 Solving the equations of motion

We use the frequency space representations (3.61)–(3.63) to insert into equation (3.57), which leads us to

~ pω ´ ωm ´ ωn ` iεqXmnpωq ´
ÿ

p,q

Xpqpωq

ż

ÿ

α

~2

4mα
W ˚

α,mn ¨Wα,pq “
ÿ

o

ropωqV
˚
mn,o. (3.64)

Defining [CKT96]

Amnpqpωq :“ ~ pω ´ ωm ´ ωn ` iεq δmpδnq ´
ż

ÿ

α

~2

4mα
W ˚

α,mn ¨Wα,pq (3.65)

we can formally solve for the decomposition coefficient [CKT96]

Xmnpωq “
ÿ

o

ropωq
ÿ

p,q

A´1
mnstpωqV

˚
pq,o. (3.66)

One should think of Amnstpωq as a simple matrix with the indices pm,nq and ps, tq, such that the first
term in definition (3.65) is diagonal and the inverse matrix is defined as

ÿ

p1,q1

A´1
mnp1q1pωqAp1q1pqpωq “ δmpδnq. (3.67)

Next we want to solve rmpωq from equation (3.56) and for that reason we insert the solution (3.66) for
Xmnpωq, which gives us [CKT96]

~ pω ´ ωm ` iεq rmpωq ´
1
2
ÿ

p,q

Vpq,m
ÿ

o

ropωq
ÿ

p1,q1

A´1
pqp1q1pωqV

˚
p1q1,o “ 2umpωq (3.68)

We can define the self energy [CKT96]

Σmnpωq :“ 1
2

ÿ

p,q,p1,q1

Vpq,mA
´1
pqp1q1pωqV

˚
p1q1,n, (3.69)

which lets us simplify equation (3.68).
ÿ

n

!

~ pω ´ ωm ` iεq δmn ´ Σmnpωq
)

rnpωq “ 2umpωq (3.70)

With the definition

Gmnpωq :“
!

~ pω ´ ωm ` iεq δmn ´ Σmnpωq
)´1

(3.71)

we can finally solve for the decomposition coefficients

rmpωq “ 2
ÿ

n

Gmnpωqunpωq. (3.72)

From rmpωq we can now obtain δρα, but remember that we defined δρα as the complex-valued density
fluctuations and the response function χαβ we are looking for describes the linear relationship between
perturbations Uext,α and the real physical density fluctuations Re δρα.

3.7 The density-density linear response function

It is time to give a formal definition of it, which reads

FT
tÑω

rRe δρ̃αsprα, ωq “:
ż

ÿ

β

χαβprα, rβ , ωqrUext,βprβ , ωq. (3.73)
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3 Solving the equations of motion

Please note that δρ̃α in equation (3.73) is a function of frequency and not of time. Therefore we start
with taking the real part of equation (3.45) and apply a Fourier transformation from time to frequency
domain.

FT
tÑω

rRe δρ̃αsprα, ωq “
1
2
ÿ

m

ż

dt eiωt
`

rmptqφα,m ` r
˚
mptqφ

˚
α,m

˘

(3.74)

We proceed with inserting the frequency decompositions for rmpωq from equation (3.61), which leads us
to

FT
tÑω

rRe δρ̃αs“
1
2
ÿ

m

ż

dt eiωt
ż dω1

2π

´

φα,me
´iω1trmpω

1q ` φ˚α,me
iω1tr˚mpω

1q

¯

. (3.75)

Now we can carry out the time integration, which gives us the Dirac deltas in the following equation.

FT
tÑω

rRe δρ̃αs“
1
2
ÿ

m

ż

dω1
´

φα,mrmpω
1qδpω ´ ω1q ` φ˚α,mr

˚
mpω

1qδpω ` ω1q
¯

(3.76)

After performing the ω1-integration we can insert the result obtained in the last section from equa-
tion (3.72).

FT
tÑω

rRe δρ̃αs“
ÿ

m

˜

φα,m
ÿ

n

Gmnpωqunpωq ` φ
˚
α,m

ÿ

n

G˚mnp´ωqu
˚
np´ωq

¸

(3.77)

Changing the subscript index of un to o using the Kronecker delta from equation (3.43) we can write

FT
tÑω

rRe δρ̃αs“
ÿ

m,n,o

ż

ÿ

β

`

φα,mGmnpωquopωqφ
˚
β,nψβ,o ` φ

˚
α,mG

˚
mnp´ωqu

˚
o p´ωqφβ,nψ

˚
β,o

˘

, (3.78)

where we can now insert rUext,βprβ , ωq from the decomposition (3.47).

FT
tÑω

rRe δρ̃αs“

ż

ÿ

β

ÿ

m,n

´

φα,mφ
˚
β,nGmnpωq

rUext,βprβ , ωq ` φ
˚
α,mφβ,nG

˚
mnp´ωq

rU˚ext,βprβ ,´ωq
¯

(3.79)

For the last step we have to recall that rUext,βprβ , tq is real, so we can use the well known Fourier relation
rUext,βprβ , ωq “ rU˚ext,βprβ ,´ωq.

FT
tÑω

rRe δρ̃αs“

ż

ÿ

β

ÿ

m,n

´

φα,mφ
˚
β,nGmnpωq ` φ

˚
α,mφβ,nG

˚
mnp´ωq

¯

rUext,βprβ , ωq (3.80)

This is finally the linear relationship between the perturbation and the density fluctuations, which enables
us to write the density-density linear response function as

χαβprα, rβ , ωq “
ÿ

m,n

´

φα,mprαqφ
˚
β,nprβqGmnpωq ` φ

˚
α,mprαqφβ,nprβqG

˚
mnp´ωq

¯

. (3.81)

3.8 One additional approximation

For the numerical evaluations in the following chapter we make one last approximation by neglecting the
off-diagonal term of [CKT96]

Amnpq « ~ pω ´ ωm ´ ωn ` iεq δmpδnq, (3.82)

which gives us the following form of the self-energy. [CKT96]

Σmnpωq “
1
2
ÿ

p,q

Vpq,mV
˚
pq,n

~ pω ´ ωp ´ ωq ` iεq
(3.83)
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4 Applications

After establishing the necessary framework in the previous chapter it is now time to focus on numerical
applications of the theory. In this chapter we deal with excitations in dipolar one- and two-layer boson
systems at low temperatures, as they are sketched in figure 1.1.

These setups can be described as homogeneous systems, if we describe each layer as a single particle type
and denote a position within a layer α using the 2D-vector rα.

As we saw in the previous chapter we need to know the ground state values of the static structure factor
to determine the Feynman states and dispersion relation for the computation of the response function.
In this thesis we use the results gained by Martin Hebenstreit [Heb13], who used the hypernetted-chain
Euler-Lagrange method to get Sαβpkq, which is hermitian with respect to both particle types and k – so
Sαβpkq “ S˚βαpkq “ S˚αβp´kq holds.

4.1 The homogeneous Feynman eigenvalue problem

If we deal with homogeneous systems, the operator from definition (3.39) simply turns to the one-body
Hamiltonian

pHα “ ´
~2

2mα
∆α, (4.1)

which allows us to write the general quantum number n from the Feynman states as the pair pn,kq and
make the plane wave ansatz

ψα,nprαq ÝÑ ψα,n,kprαq :“ eik¨rαψα,npkq, (4.2)

that we insert in equation (3.40) to obtain

~2k2

2mα
eik¨rαψα,npkq “~ωn

ż

ÿ

β

Sαβprα ´ rβqe
´ik¨prα´rβqeik¨rαψβ,npkq. (4.3)

On the right side we introduce the Fourier transform of the static structure factor and therefore get the
generalised Feynman eigenvalue problem in momentum space.

~2k2

2mα
ψα,npkq “~ωnpkq

ÿ

β

Sαβpkqψβ,npkq (4.4)

As it makes the numerical evaluation easier and more efficient we define

ξα,npkq :“ 1
?
mα

ψα,npkq, (4.5)

which leads us to the hermitian eigenvalue problem

~k2

2ωnpkq
ξα,npkq “

ÿ

β

?
mαmβSαβpkqξβ,npkq. (4.6)
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If we take the complex conjugate of both sides and use S˚αβpkq “ Sαβp´kq, it is immediately clear that
ξ˚α,npkq “ ξα,np´kq holds.

One should note that with introducing the pair of quantum numbers pn,knq, also the transitions
ÿ

n

ÝÑ
ÿ

n

ż

dskn and δmn ÝÑ δmnδpkm ´ knq (4.7)

are necessary. Although we are only interested in 2D-systems, we keep writing our equations for the
general s-dimensional case. An important Fourier identity we will also need is

ż

dsr eipk´k
1
q¨r “ p2πqsδ

`

k ´ k1
˘

. (4.8)

4.2 The normalisation

The eigenvalues and eigenvectors of equation (4.6) are calculated using LAPACK-routines and therefore
are determined with the normalisation

ÿ

α

ξ(LP)˚
α,m pkq ξ(LP)

α,n pkq “ δmn, (4.9)

which is in conflict with the normalisation we required in equation (3.41). Therefore after computing
ψα,npkq from equation (4.5) we have to renormalise the Feynman states in the following way.

ψα,npkq “

c

2mαωnpkq

~k2 p2πq´ s
2 ξ(LP)
α,n pkq (4.10)

This implies, that ψα,npkq diverges for k Ñ 0, as the dispersion ωnpkq is linear for small k. We also
define

φα,npkq :“

d

~k2

2mαωnpkq
p2πq´ s

2 ξ(LP)
α,n pkq (4.11)

ζα,npkq :“ φα,npkq ´ ψα,npkq
?
ρα

, (4.12)

which enables us to write φα,n,kprαq “ φα,npkqe
ik¨rα and ζα,n,kprαq “ ζα,npkqe

ik¨rα .

4.3 Final preparations

Just before we can start our ultimate march towards the numerical results we have to bring our expres-
sions into a convenient form for the numerical implementation. Therefore we start with defining the
abbreviations

Λα,mnopkm,kn,koq :“ φ˚α,mpkmq ζα,npknq ζα,opkoqkn ¨ ko (4.13)
Ξα,mnopkm,kn,koq :“ φα,mpkmq ζα,npknq ζ

˚
α,opkoqkn ¨ ko, (4.14)

which enable us then to rewrite Vpq,n of equation (3.60) as

Vpq,npkp,kq,knq “ ´
ÿ

α

~2

2mα
p2πqs

!

ψ˚α,npknq
´

φα,ppkpqζα,qpkqqkq ` φα,qpkqqζα,ppkpqkp

¯

¨ kn

´
ωnpknq

?
ρα

ωnpknq ` ωppkpq ` ωqpkqq

´

Λα,npq ´ Ξα,pqn ´ Ξα,qpn
¯)

δpkn ´ pkp ` kqqq . (4.15)

21



4 Applications

We factor out the Dirac deltas and define

V pq,npkp,knq δpkn ´ pkp ` kqqq :“ Vpq,npkp,kq,knq. (4.16)

Due to the Dirac delta V pq,n only depends on two of the three k-vectors and here kq “ kn´kp is chosen.
This notation lets us write the product of equation (3.83) as

Vpq,mpkp,kq,kmqV
˚
pq,npkp,kq,knq “ δpkm ´ pkp ` kqqq δpkm ´ knqV pq,mpkp,kmqV

˚

pq,npkp,knq, (4.17)

which shows that the self energy is diagonal with respect to km and kn.

Σmnpkm,kn, ωq “
1
2
ÿ

p,q

ż

dskp
V pq,mpkp,kmqV

˚

pq,npkp,kmq

~pω ´ ωppkpq ´ ωqpkm ´ kpq ` iεq
δpkm ´ knq (4.18)

Again we factor out the Dirac delta and define

Σmnpk, ωq δ
`

k ´ k1
˘

:“ Σmnpk,k1, ωq. (4.19)

Based on the definition of Gmn in equation (3.71) we can write

Gmnpkm,kn, ωq “
´

~pω ´ ωmpkmq ` iεqδmn ´ Σmnpkm, ωq
¯´1

δpkm ´ knq, (4.20)

as Gmnpkm,knq is diagonal with respect to km and kn. Once more we define

Gmnpk, ωq δ
`

k ´ k1
˘

:“ Gmnpk,k
1, ωq. (4.21)

Now we are ready to write down χαβ , which is a function of rα ´ rβ in the homogeneous case. We start
from equation (3.81), substitute k Ñ ´k in the second addend and make use of φ˚α,npkq “ φα,np´kq,
which leads us to

χαβprα ´ rβ , ωq “
ÿ

m,n

ż

dsk eik¨prα´rβqφα,mpkqφ˚β,npkq
´

Gmnpk, ωq `G
˚

mnp´k,´ωq
¯

. (4.22)

As we want to calculate the response function in momentum and frequency space, we simply omit the
parts of the previous equation that form the inverse Fourier transformation from k to r.

χαβpk, ωq “ p2πqs
ÿ

m,n

φα,mpkqφ
˚
β,npkq

´

Gmnpk, ωq `G
˚

mnp´k,´ωq
¯

(4.23)

From this an immediate implication is the relation

χ˚αβp´k,´ωq “ χαβpk, ωq. (4.24)

4.4 Results

For presenting the numerical results we use the system of units also introduced in [Ast+07]. We express
masses in units of the characteristic mass m0 and as all our particles have the same mass we choose m0
to be the particle mass. Further we express lengths in units of

r0 :“ m0µ
2

4π~2 (4.25)
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and energies in units of

E0 :“ ~2

m0r2
0
, (4.26)

where µ is the magnitude of the boson’s generalised dipole moments. Note that in the specific magnetic
case one has µmag “ µ

´ 1
2

0 µ with µ0 as the permeability of free space and in the case of electric dipoles,
one has µel “ ε

1
2
0 µ with the permittivity of free space ε0.

We evaluate the response matrix χαβpk, ωq for three different system configurations (ϑ is the angle
enclosed by the z-axis and µ, ρ the density of each layer and d the distance between the layers):

• one layer, ϑ “ 0, ρ “ 256 r´2
0

• two layers, ϑ “ 0, ρ “ 256 r´2
0 , d “ 0.06 r0

• two layers, ϑ “ 0.175π, ρ “ 256 r´2
0 , d “ 0.06 r0

To determine the Feynman states from equation (4.6), we need the static structure factor, which is taken
from the calculations of Martin Hebenstreit [Heb13] and illustrated in figure 4.1.

4.4.1 One layer with non-tilted dipoles

The negative imaginary part of the density-density response function χpk, ωq for a system with one layer,
ρ “ 256 r´2

0 , ϑ “ 0 and d “ 0.06 r0 is shown in figure 4.2. This kind of system is also studied in [Maz+09]
for several densities. The response function is connected to the dynamic structure factor of the system
via the fluctuations-dissipation-theorem [SAH04, p. 146]

Spk, ωq “ ´
1
π
Imχpk, ωq. (4.27)

One notices, that the collective mode in the CBF calculation becomes lowered in comparison to the
Feynman-Bijl dispersion. It becomes also noticeable, that the CBF approximation is no single-pole
approximation [SAH04, p. 169] like the Feynman approximation, as there are regions at higher ω than
the collective mode, where the response function does not vanish. These regions correspond to excitations,
which can decay into two Feynman excitations [SAH04, p. 176]. The ω-dependence for the fixed wave
vector k “ 6.33?ρ êr (at the roton-minimum) is illustrated in figure 4.3. Here one can see the sharp
peak of the imaginary part (the collective mode) and the diverging real part. In fact the width of the
peak depends on the choice of ε in equations (4.18) and (4.20) and for the calculations performed in this
entire work, we choose ε “ 0.059 ~ρm´1

0 . This choice also determines the width of the collective mode in
the colour map of figure 4.2. At ω « 50 ~ρm´1

0 one can see a minor peak in figure 4.3, which corresponds
to states that can decay into two Feynman-maxons. Another interesting feature of the dispersion in
figure 4.2 is the so called Pitaevskii-plateau [Pit59] for k ą 11?ρ, above which excitations can decay into
two Feynman-rotons.

4.4.2 Two layers with non-tilted dipoles

In the second example we have two layers with a ρ “ 256 r´2
0 , d “ 0.06 r0 and ϑ “ 0. Now χ turns into

a 2ˆ 2 matrix χαβ . Figure 4.4 shows ´ ImχAApk, ωq – the negative imaginary part of the first diagonal
element. Note that we use the capital Latin letters A and B to indicate the particle type, i. e. the layer.
The most important feature of χpk, ωq is the collective mode, which can be seen also in the other matrix
elements, but in the plot of a diagonal element it is most easily seen, so we do not show a colour map
plot of an off-diagonal element. An important insight from this calculation is that the two Feynman-Bijl
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Figure 4.1: The static structure factor obtained by Martin Hebenstreit [Heb13] for the situations indicated
by the label at the top of each plot: one layer and two layers not tilted; two layers tilted.
In each case the density per layer is ρ “ 256 r´2

0 and unless the real and imaginary part are
given explicitly, the shown function is real. For the two layer cases the distance between the
layers is d “ 0.06 r0 and only one diagonal and one off-diagonal element is given. In the tilted
case the angle between the z-axis and the dipole moments is 0.175π.
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Figure 4.2: ´ Imχpk, ωq for a one-layer system with non-tilted dipoles at the density ρ “ 256 r´2
0 as a

colour map with ε “ 0.059 ~ρm´1
0 in equations (4.18) and (4.20). The solid green line shows

the dispersion in Feynman-Bijl approximation. The values are transformed with the mapping
χÑ

?
χ to increase the contrast in the image.
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Figure 4.3: Reχpk, ωq and Imχpk, ωq for a one-layer system with non-tilted dipoles at the density ρ “
256 r´2

0 with k “ 6.33?ρ êr, which is at the roton-minimum of the dispersion (see figure 4.2).
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Figure 4.4: ´ ImχAApk, ωq for a two-layer system (distance of the layers is d “ 0.06 r0) with non-tilted
dipoles at the density ρ “ 256 r´2

0 in each layer as a colour map with ε “ 0.059 ~ρm´1
0

in equations (4.18) and (4.20). The solid green lines show the dispersion in Feynman-Bijl
approximation. The values are transformed with the mapping χAA Ñ

?
χAA to increase the

contrast in the image.

modes split up, as the layers are coupled. In figure 4.5 χAApk, ωq and χABpk, ωq are plotted for the fixed
wave vector k “ 6.33?ρ êr, where one can see that the location of the collective mode is the same in
the diagonal and in the off-diagonal-term, but the poles have different signs in the off-diagonal part. In
figure 4.4 one can see again the Pitaevskii-plateau, but this time it splits up into two levels, as the roton
of the Feynman-Bijl-dispersion is also split up into two levels.

4.4.3 Two layers with tilted dipoles

The last system we analyse consists of two layers at ρ “ 256 r´2
0 , d “ 0.06 r0 and ϑ “ 0.175π, which

is a generalisation of the investigations of Macia et al. [Mac+12]. This time the system is anisotropic
and so in figure 4.6 we give the ´ ImχAApk, ωq for k Ò êx and k Ò êy. One can clearly see, that
the interaction between the dipoles strongly depends on the direction in k-space. The plot for the case
k Ò êx shows a behaviour similar to the previous non-tilted cases, but with a higher roton-energy and
a blurred dispersion in the maxon-region, as excitations are able to decay at such low frequencies. For
the second direction k Ò êy the collective mode of the system has a second minimum, which can be
interpreted as the system is about to solidify in y-direction, as the dispersion tends to become periodic.
The lower roton energy becomes almost 0 at the wave vector, we call k0 for now. If the collective mode
of a system really reaches ω “ 0 at k0, then time-independent waves proportional to eik0¨r could exist in
this system. That a phase transition is about to happen, is also supposed by Martin Hebenstreit [Heb13]
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Figure 4.5: ReχAApk, ωq and ImχAApk, ωq in the upper plot and ReχABpk, ωq and ImχABpk, ωq in the
lower plot for a two-layer system with non-tilted dipoles at the density ρ “ 256 r´2

0 in each
layer with k “ 6.33?ρ êr, which is at the roton-minimum of the dispersion (see figure 4.2).
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on the basis of the ground state data. In is also clearly to see, that in the region of the second minimum
of the collective mode, the splitting up of the Feynman-Bijl dispersion also increases a second time.
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Figure 4.6: ´ ImχAApkxêx, ωq (upper plot) and ´ ImχAApkyêy, ωq (lower plot) for a two-layer system
with tilted dipoles (ϑ “ 0.175π) at the density ρ “ 256 r´2

0 in each layer as a colour map with
ε “ 0.059 ~ρm´1

0 in equations (4.18) and (4.20). The solid green lines show the dispersions in
Feynman-Bijl approximation. The values are transformed with the mapping χAA Ñ

?
χAA

to increase the contrast in the image.
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In this work we have dealt with the calculation of excitations in 2D-multilayer dipolar Bose gases. These
kinds of systems are a very active experimental research topic, see for example [Aik+12], [Lah+07],
[Lu+11], [Stu+12] and [Tak+12]. The approach of this work was to describe the multilayer systems as
homogeneous 2D multi-component systems instead of inhomogeneous 3D single-component systems.

We have derived a general formalism to determine the density-density response matrix χαβ in inho-
mogeneous multi-component Bose systems. The starting point was an ansatz for the wave function,
where we allowed fluctuations of the correlation functions from the Jastrow-form for the ground state
theory. We defined an action functional, that was minimised with respect to the fluctuations of a general
n-body-correlation function δuα. With introducing the complex-valued n-particle density δρα and the
complex-valued n-particle current density jα, we could write our equations of motion in the form of
continuity equations with driving terms Dα.

To avoid the appearance of the four-body distribution function we subtracted the one-body equation of
motion from the two-body equation of motion and we applied the convolution approximation and the
uniform limit approximation. We introduced the Feynman states ψα,n and the states φα,n, which are
orthonormal to the Feynman states. The equations of motion were projected onto the basis defined by
the states ψα,n and φα,n, which led us to the density-density response matrix χαβprα, rβ , ωq.

In the case of homogeneous systems the momentum k is a good quantum number for the Feynman states
ψα,n,k, which enabled us to numerically evaluate χαβpk, ωq for a given static structure factor Sαβpkq. We
analysed three systems, where the first one consisted of a single layer of dipolar bosons with a polarisation
perpendicular to the layer. The resulting dispersion showed the characteristics of a bosonic system: the
maxon- and the roton-region and the Pitaevskii-plateau. For the second system we dealt with, which was
a system of two layers with non-tilted dipoles, the response function became a matrix and we saw the
collective mode splitting up. The third system we took a look at, was the same as the second system,
but with tilted dipoles. Therefore the third system was an anisotropic system and we noticed that the
system was about to solidify in the direction normal to both the z-axis and the tilting direction.

While we derived a formalism to treat inhomogeneous problems, there are still some difficulties left. The
first and maybe biggest problem is to get ground state data for an inhomogeneous system. Another
problem is that the Feynman eigenvalue problem becomes more difficult. If a specific system has some
kind of symmetry, another ansatz than the plain-wave ansatz for the Feynman states could solve the
problem, e. g. in [KZ01] spherical harmonics are used for 4He droplets. A more detailed discussed of the
spherical symmetry can be found in [CK95]. For problems without any symmetry finite element methods
might be suitable.

Although inhomogeneous systems always come with increases complexity, they are especially interesting
as the real world experiments on cold gases are hardly ever homogeneous. Usually harmonic trapping
potentials are used and so in the centre of the gas the density would be larger than at the edge. On
the other hand with the approach of this work, describing multi-layer systems as homogeneous 2D-multi-
component systems, we also can not describe layers with a finite thickness, as it was done in [HZ13].

The static structure factor, that is taken from a ground state calculation to determine the Feynman
states, could also be taken from a Monte Carlo ground state calculation. As such ground state data
would be more accurate than data from the hypernetted-chain equations, also the results for the response
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function can be expected to be more precise. The price one has to pay for the improvement of precision
is that the ground state calculation becomes much more computationally expensive.

There are also tentative steps at using Monte Carlo methods for directly calculating the excitations of
quantum systems, for example [Nav+13], where the results for the collective mode are already satisfactory.
But these Monte Carlo approaches need further improvements to be able to treat the finite lifetime and
decaying of excitations, as they were analysed within this work.

A way to improve the accuracy of the method presented in this work, is to add the fluctuations of
triplet correlations to the excitation operator defined in equation (2.4). This was done in [CK10] for the
homogeneous geometry and the numerical results agree much better with experimental data than without
the fluctuations of the triplet correlations included. Indeed the derivation for inhomogeneous systems
including fluctuations of the triplet correlations would be a tedious task.
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