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Abstract

The time-dependent Gross–Pitaevskii equation (GPE) is numerically solved in the

laboratory frame to describe the dynamic behaviour of Bose–Einstein conden-

sates (BECs) such as the dynamics of vortex formation in harmonic traps and

the hysteresis of circulation in toroidal BECs. A dissipation mechanism has to be

added to the GPE when it is solved numerically, which is usually done via propa-

gating with an imaginary time fraction in the timestep. In this bachelor thesis it

is proven that this damping method could not reproduce the experimental results

for BECs in harmonic trap, when applied to rotating systems simulated in the lab-

oratory frame instead of the rotating frame of reference. This problem is solved by

introducing a momentum-dependent damping model. However, for toroidal con-

densates, the discrepancy of the critical rotation frequencies between experiments

and calculations, which was recently shown by Eckel et al. (S. Eckel et al. “Hys-

teresis in a quantized superfluid ‘atomtronic’ circuit”. In: Nature 506 (2014), p.

200) was still present.
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1 Introduction

The theoretical prediction of condensation of a dilute quantum gas into the state of

lowest energy by Einstein dates back to 1925. Since then many experiments and sim-

ulations were performed on liquid helium, rubidium atoms and nowadays on dipolar

atoms like Chromium and Dysprosium [1, 2] to create a dipolar Bose–Einstein Conden-

sates (BECs) [3]. By rotating BECs over a critical frequency, vortices with a quantised

circulation can be created, which order themselves in lattices when their number increases

and the system equilibrates [4, 5, 6].

To simulate the dynamics of BECs with the Gross–Pitaevksii equation (GPE) an ad-

ditional damping mechanism is used. The BEC is usually damped by introducing an

imaginary component to the equation [7, 2]. However, this bachelor thesis shows, that for

BECs that are simulated in the laboratory reference frame, this damping model (which

we refer to as model A) yields wrong results. We introduce an improved damping model,

based on a momentum-dependent damping rate (model B).

In the second chapter, a short overview of the mean field description of the many-body

Schrödinger equation that leads to the GPE is given in order to introduce the occurring

quantities. In chapter 3, the quadrupole mode and the scissors mode, that can be found

in rotating BECs are introduced briefly. The theoretical background of vortices in stirred

BECs is shown and the critical rotational frequency for which vortices occur is given in

Thomas–Fermi approximation.

To simulate the GPE, second order operator splitting was used. The theory behind

this propagation method is derived for time-independent linear Hamiltonians and then

generalised to the GPE in chapter 4. It is shown that, by propagating the equation in

imaginary time, the ground state of the BEC can be found.

Next, damping model A, that is widely used, and our damping model B are introduced

and discussed. These models are tested on the experiment on a rotating BEC in a har-

monic trap that Madison et al. performed in 2001 [5] in chapter 5. The damping strength

of these two models is compared and a rule of thumb of how to choose the parameters of

damping model B is stated.

Then, the dynamics of vortex creation is shown on the basis of two examples. The critical

frequency is investigated and some of the occurring modes are interpreted briefly.
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In chapter 6, the experiment of Eckel et al. [8], that showed a hysteresis behaviour in the

critical rotation frequencies of toroidal BECs, was used as a starting point. They found

out that the results for the critical frequencies using the GPE with damping model A

differs from the experimental results. We performed simulations on the critical frequencies

with damping models A and B to test, whether damping model B yielded better results.

However, the results for the critical frequencies with both damping models were the same,

so that it can be concluded that damping model B could not resolve the problem described

by Eckel et al.
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2 The Gross–Pitaevskii Equation

An useful equation to describe the dynamics of a Bose–Einstein condensate (BEC) was

found by Eugene P. Gross and Lev Pitaevskii in 1961 [9, 10]. In the following section, a

short overview of their approach shall be given in order to define the quantities that will

be of later use. When the temperature in a low density Bose gas is close to zero Kelvin,

the effective interaction between atoms can be modelled as

Ṽint(k) =
4π~2a

m
(1)

in momentum space with a being the s-wave scattering length of atoms with mass m. The

Fourier transform of this potential results in the corresponding real space interaction

Vint(r− r′) = g δ(r− r′) (2)

which is depending on the coupling constant g = N 4π~2a/m and the positions of the

interacting particles r and r′. By inserting this potential into the N-particle Schrödinger

equation and using a mean-field approximation the Gross–Pitaevskii equation (GPE) can

be obtained [11]: (
− ~2

2m
∇2 + V (r) + g |ψ(r)|2

)
ψ(r) = µψ(r) (3)

with normalisation ∫
|ψ(r)|2 dr = 1. (4)

Here V (r) is an external potential, such as the trap holding the condensate. The GPE

can be interpreted as a nonlinear 1-body Schrödinger equation with an additional density

dependent repulsive or attractive interaction term Vg(r) = g|ψ(r)|2.

Yet, in contrast to the Schrödinger equation, its eigenvalue is not the energy but chem-

ical potential µ. Due to the mean-field approximation only two-particle interactions are

considered, which is a good approximation for condensates at low temperatures.
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3 Rotating Condensates

Suppose a BEC is initially in the ground state of an asymmetric two dimensional trap

with frequencies wx and wy along the x̂- and ŷ-axis respectively. A sudden rotation of

the trap with frequency Ω excites higher modes of the condensate and the condensate

will start to oscillate. In order to describe this oscillatory behaviour it is convenient to

introduce the distortion parameter [12]

α ≡ −Ω
〈y2 − x2〉
〈y2 + x2〉

(5)

and the deformation of the trap

ε ≡
ω2
x − ω2

y

ω2
x + ω2

y

. (6)

3.1 Quadrupole Mode

Consider a BEC in a trap with ω⊥ = ωx = ωy 6= ωz. The energy of the excited modes

can be obtained analytically when the kinetic energy term in equation (3) is neglected.

This approximation is the Thomas–Fermi limit of the GPE, which holds for large g or a

large number of particles. One mode that is of special interest is the quadrupole mode

with its solutions [3]:

ω2(l = 2,m = ±2) = 2ω2
⊥ (7)

ω2(l = 2,m = ±1) = 2ω2
⊥ + ωz. (8)

3.2 Scissors Mode

Another mode that can be observed in rotating condensates is the scissors mode. It is

the oscillatory behaviour of a trapped condensate that occurs when the main axis of the

potential is shifted abruptly. The result is an oscillation of α and the angle between the

main axis of the potential and the main axis of the condensate with equal frequencies [13].

It has been shown that the scissors mode cannot only be excited by a sudden shift of

the potential, but also by a constant rotation of the condensate, i.e. a rotation of the

main axis of the condensate with frequency Ω ≥ ω⊥/
√

2 [12]. By assuming a small trap

deformation ε � 1 and a constant Ω, the frequency of this oscillatory mode is given

by [13]:

ωsc =
√
ω2
x + ω2

y . (9)

3



3.3 Vortices

From the hydrodynamic equations that follow from the GPE in the Thomas–Fermi limit

it can be shown that the integral over the velocity field v around a closed loop is given

by [3] ∮
v dl = 2π l

~
m

(10)

with l being an integer number. This quantisation accounts for the existence of vortices

with quantised circulation, which are defined as points where l 6= 0.

The distance at which a BEC regains its bulk value when a hard wall perturbs it is

defined as the healing length

ξ =
~√

2mg n
(11)

with n being the bulk density. The healing length can be used to estimate the size of a

vortex core.

In the case of two dimensional condensates with ωx = ωy = ω⊥ vortical solutions are

of lower energy if the angular velocity of the condensate is larger than the critical veloc-

ity in Thomas-Fermi approximation [14]

ΩTF =
~ω2
⊥

µ
ln

(
1.776µ

~ω⊥

)
. (12)
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4 Numerical Methods

4.1 Second Order Operator Splitting

The time-dependent GPE

i ~
∂

∂t
ψ(t) = Ĥ(t)ψ(t) (13)

is used to get the time evolution of the wave function of the condensate. Here Ĥ(t) = V̂(t)+T̂

can be decomposed into a kinetic term and a time dependent potential term. For a time

independent Hamiltonian the time evolution can be written as

ψ(t+ ∆t) = e−
i
~ ∆t Ĥψ(t). (14)

In this case the second order factorisation of the exponential is straight forward

ψ(t+ ∆t) = e−
i
~

∆t
2

V̂e−
i
~ ∆t T̂e−

i
~

∆t
2

V̂ψ(t) +O(∆t3). (15)

However, the GPE contains a time dependent potential

V̂ψ(r, t) = V̂(t)ψ(r, t) =
(

V̂ext(r, t) + g |ψ(r, t)|2
)
ψ(r, t). (16)

This time dependency requires the inclusion of the forward time derivative operator

D̂ =
←
∂
∂t

which acts to the left as indicated by the arrow [15].

ψ(t+ ∆t) = e−
i
~ ∆t (Ĥ(t)+D̂)ψ(t). (17)

It has been shown that in this case the second order operator splitting gives

ψ(t+ ∆t) = e−
i
~

∆t
2

V̂(t+∆t) e−
i
~ ∆t T̂e−

i
~

∆t
2

V̂(t)ψ(t) +O(∆t3). (18)

The potential V̂(t+ ∆t) in equation (16) depends on ψ(t+ ∆t). This implies that for the

wave function to be propagated from ψ(t) to ψ(t+ ∆T ) the later term would have to be

known already.

Fortunately, Chin [16] showed that the part of V̂(t) can be evaluated after the first two

exponential operators in equation (18) acted on the wave function. This means that

ψ(t+ ∆t) = e−
i
~

∆t
2 (V̂ext(r,t)+g |φ|2) e−

i
~ ∆t T̂e−

i
~

∆t
2 (V̂ext(r,t)+g |ψ(r,t)|2)ψ(t)︸ ︷︷ ︸

φ

+O(∆t3) (19)
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yields the correct time evolution up to second order.

As a conclusion, the condensate can be propagated in real time by applying equation (19)

consecutively.

4.2 Imaginary Time Propagation

In order to find the ground state wave function of the condensate the method of choice

is imaginary time propagation. In the following the Hamiltonian with eigenstates φn and

eigenenergies En is assumed to be time independent and linear. In the case of the GPE

this method is still applicable, as shown by Chiofalo et al. in 2000 [17].

By substituting

i ∆t → ∆t̃ (20)

in equation (14) one obtains

ψ(∆t̃) = e−
1
~ ∆t̃ Ĥψ(0) (21)

at t = 0. The wave function can be written in the eigenstates of the Hamiltonian

ψ(0) =
∑
n

cn φn with the result

ψ(∆t̃) = e−
1
~ ∆t̃ Ĥ

∑
n

cn φn (22)

=
∑
n

e−
1
~ ∆t̃ Encn φn. (23)

The last equation shows that propagation with imaginary time yields an exponential

damping of the eigenstates with a strength proportional to the energy. This means, that

by applying this operator consecutively the wave function will be propagated towards the

ground state.

4.3 Damping methods

To get a suitable description of the real time behaviour, a damping mechanism has to be

introduced to equation (19). It simulates the loss of energy due to interaction with non

condensed particles.

In the experiment, a stirring potential excites higher modes of the condensate which col-

lapse into steady vortical states within a timespan depending on the temperature [5].

Without losses, the condensate would never show stable vortex lattices, because they
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correspond to local minimas in the energy. This motivates the integration of a damping

mechanism.

4.3.1 Model A: Imaginary Time Damping

The easiest choice is to add a small phenomenological dissipation parameter γ to equa-

tion (13):

i ~
∂

∂t
ψ(t) = (1− i γA) Ĥ(t)ψ(t) (24)

i ~
∂

∂ t(1− i γA)
ψ(t) = Ĥ(t)ψ(t). (25)

It can be seen, that this damping method corresponds to a propagation with a complex

time step t′ = t(1 − i γA). Therefore, every real time step the system is simultaneously

damped with imaginary time propagation. Hence, this damping method will hereinafter

be referred to as “Model A”.

Imaginary time damping was first introduced as phenomenological dissipation by Choi

in 1998 [18]. When solving the GPE the parameter γA is set to a value such that the

damping is comparable to experiments (≈ 0.01).

A downside of this damping method is that the damping depends on the exact form

Ĥ. It will always propagate towards the state of lowest energy of Ĥ when the damping

parameter γA is large enough or when the number of time steps is large. Since damping

is introduced by the additional term −i γA Ĥ(t), the damping depends on the exact form

of Ĥ. That means, that the choice of reference frame strongly influences the damping

behaviour.

If we assume a BEC confined in a harmonic trap that rotates with Ω > ΩTF , a finite ε

is needed to generate vortices in experiments, because a rotationally invariant potential

can not excite the condensate. However, when solving the GPE in the rotating frame of

reference even a however small ε will generate vortices using imaginary damping, which

is physically impossible. However, this damping method is widely used in the GPE term

[7, 2, 8].

4.3.2 Model B: k-dependent Damping

A solution to the problem of Ĥ dependent damping can be found by introducing a dis-

sipation that only depends on the momentum k instead of Ĥ. The simplest case is to
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damp momenta that are greater than a certain value k0, which yields

i ~
∂

∂t
ψ(t) =

(
Ĥ(t)− i γB Θ(k − k0)

)
ψ(t) (26)

where Θ(k − k0)) is the Heaviside function. In the experiment, this would correspond

to particles with large momenta evaporating from the condensate. The parameter γB

is used to define the damping strength, whereas k0 linked to the healing length of the

setup:

k0 =
2 π

n ξ
. (27)

A value of n ≈ 6 yields best results. A too large k0 will not provide enough damping,

whereas a too small n will influence the system too much, because even the ground state

will be affected by damping.

In principle, any function can be used in place of Θ(k−k0)). A smooth approximation to

the step function, like 1/2 (1 + tanh(s k)), with s being the steepness, yields more stable

vortex lattices, because also smaller k-values are damped slightly.

This damping method will be referred to as “Model B”.
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5 Bose–Einstein Condensates in a Rotating Trap

5.1 Reduced Units

In the following, the results for simulations of BECs in rotating traps using either damping

model A or B will be illustrated. It is convenient to introduce reduced units depending

on the mass of the atoms m, the mean trap frequency ω⊥ and the oscillator length

x0 =
√
~/mω⊥:

x′ = x/x0 (28)

E ′ = E/ (~ω⊥) (29)

ω′ = ω/ω⊥ (30)

g′ = g/

(
~2

m
x0

)
(31)

The prime marking the reduced units will be omitted from now on, so that the new GPE

gets (
−1

2
∇2 + V (r, t) + 4π aN |ψ(r, t)|2

)
ψ(r, t) = i

∂

∂t
ψ(r, t) (32)

with all remaining quantities given in reduced units. Additionally, the period of one full

rotation of the external potential τ = 2π/Ω will be used as time scale.

5.2 Two Dimensional GPE

Condensates that are very weakly confined in the ẑ-direction can be approximated to be

uniform in that direction, which may allow a 2D analysis.

In order to simulate a system with N particles in a cylinder of length Lz with ωz = 0 and

finite ωx,y, the coupling constant is modified [3]

g3D 7→ g3D/Lz ≡ g2D. (33)

However, for traps with finite ωz, a 3D simulation is used to calculate the line density

n(z) at position z = 0. To get to the corresponding 2D simulation, the line density is

assumed to be constant n(z) = n(0) = N/Lz, which yields an approximate value for Lz

[3].

5.3 Experiment of Madison et al.

This section will show how the two different damping methods affect the dynamic be-

haviour of a simulated BEC confined in a rotating trap with small deformation.
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In 2001 Madison et al. investigated the dynamics of vortex nucleation experimentally by

preparing a BEC in the ground state of a deformed harmonic trap and suddenly starting

to rotate the condensate [5]. The experiment was done with 3× 105 87Rb atoms in a trap

with mean frequency ω⊥ = 200 Hz and a small trap deformation ε = 0.025. The ratio

between the trap frequencies ẑ-direction was ω⊥/ωz = 9.2. After equilibration of the

BEC in the trap, the rotational frequency Ω was turned on rapidly within 20 ms (≈ 1.5τ)

to a final value of 0.7ω⊥ and held constant afterwards.

The time evolution of the absolute of the distortion parameter can be seen in figure 1.

In the first 300 ms (≈ 40τ) the distortion parameter α oscillates, which corresponds to

the oscillating elliptical shape of the condensate. Thereafter a spontaneous decrease of

α to a value smaller than 0.1 was observed when vortices enter the condensate and the

oscillations of α cease.

It took the BEC about 600 ms (≈ 85τ) to equilibrate to a stable vortex lattice consisting

of 7 vortices. The equilibration time depended on the temperature of the BEC. More pre-

cisely, a higher temperature, which corresponds to higher damping in the simulation, led

much faster to stable vortex lattices than lower temperatures. However, high temperature

also hindered ellipticity of the BEC which is crucial for the onset of vortices.

Figure 1: Disortion parameter and density plots for a condensate consisting of 3 × 105 87Rb atoms in

a trap with mean frequency ω = 200 Hz and ε = 0.025. The stirring frequency was turned on rapidly

(20 ms) and held constant for (300 ms). The experiment showed an oscillation of α followed by the onset

of vortices after about 40 rotations (300 ms). Within 85 rotations (600 ms) they achieved a stable vortex

lattice consisting of 7 vortices. Image taken from reference [5].
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5.3.1 Simulation Parameters

The experiment of Madison et al. was simulated with both imaginary and k-dependent

damping using the same g, ε, N and Ω in order to be comparable. To ease the onset of

vortices, a slightly higher deformation of the trap ε = 0.0975 than in the experiment of

Madison et al. was chosen.

A 3D simulation was performed in advance to get the 2D coupling constant g2D = 252.

The external potential had the form

V̂ext(r, t) =
1

2

(
(1 + ε) x̃2 + (1− ε) ỹ2

)
(34)

with x̃ = x cos(Ωt)− y sin(Ωt) and ỹ = x sin(Ωt) + y cos(Ωt).

First, 500 imaginary time steps were performed without rotation of the potential in order

to propagate a Gaussian trial function to the ground state of the trap. Then the ground

state wave function was propagated in real time with linearly increasing Ω. Within 3τ

The rotation frequency arrived the final value of Ω = 0.7.

5.3.2 Damping Model A

The experiment of Madison et al. was simulated with damping model A with γA = 0.01.

This value was chosen like in the simulations by Tsubota et al. , who worked in the ro-

tating frame of reference [7].

By damping the simulation with an imaginary part in the time step as described in equa-

tion (25), the simulation of the experiment of Madison et al. resulted in no vortices. After

20 rotations of the trap a stable state without vortices was reached, which can be seen in

figure 2. The final shape of the condensate was elliptical like the plot corresponding to

t = 150 ms in figure 1, but further time propagation did not lead to a vortex state.

Figure 3 shows the fast equilibration of the angular momentum. The oscillations in the

first few rotations correspond to surface excitations, that would have been necessary to

stimulate the creation of vortices. However, these excitations were damped before a vor-

tex could arise. The necessity of these quadrupole excitations for the onset of vortices

was experimentally proven [4].
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Figure 2: Density of a 2D simulation with time step ∆t = 0.005, g2D = 252, N = 3×105 , ωx = 0.95 and

ε = 0.0975 after 20 rotations with Ω = 0.7. The frequency was turned on linearly in the first three full

rotations of the potential and held constant afterwards. These parameters were chosen to be comparable

with the experiment of Madison et al. [5], yet a higher ε was used to ease the creation of vortices. Even

though the experiment resulted in a vortex lattice consisting of 7 vortices, the simulation with damping

model A using γA = 0.01 did not yield any vortices.

 0

 1

 2

 3

 0  5  10  15  20

l z

t/τ

Figure 3: Angular momentum of the simulation with parameters described in figure 2. This plot illus-

trates the equilibration of the system within 10 rotations. In comparison with Madison et al. the system

did not show a spontaneous onset of vortices even within 200 rotations.

5.3.3 Damping Model B

The second damping method we use to simulate the experiment of Madison et al. was

model B. The parameters were kept the same as in figure 2, but damping was introduced

as described in equation (26). Figure 4 compares the absolute of the Fourier transform

of the ground state wave function in red to the damping potential. It can be seen that a

choice of k0 = 5 as advocated in equation (27) hardly affects the wave function, because

it only damps fast oscillations in k-space.
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Figure 4: Absolute of the Fourier transform of the ground state wave function obtained with imaginary

time propagation (red) and the damping potential of damping model B (blue). Same parameters as in

figure 2. It can be seen that k0 = 5 was chosen such that the potential hardly affected the ground state.

The time evolution of the density of the wave function can be seen in figure 5. It shows

that in the beginning the shape of the condensate was deformed elliptically due to the

quadrupole excitations until vortices started to collocate at the edges of the condensate

after t = 10τ . The elliptical shape of the condensate was lost after the first vortex had

entered the condensate from the border of the BEC. After 200 rotations a stationary

vortex lattice as in the experiment of Madison et al. was created.

Figure 6 shows the corresponding phase map to figure 5. It can be seen how the positions

of the phase jumps moved closer and closer to the edges of the condensate until one

entered the condensate spontaneously as a vortex.
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Figure 5: Time evolution of the density of the wave function using damping model B. The parameters

were: ∆t = 0.005, g2D = 252, N = 3× 105 , ωx = 0.95 and ε = 0.0975. The parameters of the damping

model were k0 = 5 and γB = 0.01 The spontaneous onset of vortices can be seen after about 50 rotations

when vortices entered from the border in accordance with the experiment by Madison et al. However, it

took longer for the system until the vortex lattice stabilised (200 rotations in the simulation compared

to 84 in the experiment).

Figure 6: The corresponding phase map of figure 5. It shows how vortices order along the borders of the

condensate, before the first vortex enters.
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Greater insight into the system is gained by looking at the time dependency of the an-

gular momentum in figure 7. The oscillation in the first few rotations is a sign of the

scissors mode. The spontaneous increase of the angular momentum after 50 rotations

was caused by a vortex entering the condensate. Even though the vortices enter the

condensate relatively fast, full equilibration of the angular momentum takes much longer.

 0
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l z

t/τ

Figure 7: Angular momentum of the simulation described in figure 5. First, the angular momentum

showed oscillations that corresponds to quadrupole excitations until the first vortex entered the conden-

sate after 50 rotations. When the vortex lattice was ordered, the angular momentum stabilised.

As it has been done in the experiment by Madison et al. , the disortion parameter was

calculated and plotted in figure 8. The same oscillations in the distortion parameter were

observed, even though the first vortex enters the condensate about 10 rotations later than

in the experiment. The vanishing of fluctuations is again an indication that a stationary

vortex lattice was reached. The final value of α of ≈ 0.13 was higher than in the experi-

ment (α ≈ 0.07), due to the greater ε.

To demonstrate that the oscillations in α are caused by the scissors mode, the frequency

was fitted to a sine function (figure 8). The estimated frequency of this oscillation was

ωα = 1.664± 0.003, whereas the expected scissors mode frequency in the Thomas–Fermi

limit is ωsc = 1.414 according to equation (9). However, the approximation of neglecting

the kinetic energy may not hold in this case due to a relatively small g.
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Figure 8: Distortion parameter α of the simulation described in figure 5. First, the quadrupole modes

were excited that lead to the sinusoidal behaviour in the first 30 rotations. Afterwards, when the vortices

entered the condensate, the system lost its deformed shape and the distortion parameter stabilised around

α = 0.13 which is a bit higher than in the experiment where it converged to a value less than 0.10.
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Figure 9: Distortion parameter as in figure 8. This plot shows the quadrupole oscillations in the first

few rotations fitted with a sine function.

5.3.4 Comparison of Damping Strength

In order to compare the strength of the damping potential for the two previously men-

tioned simulations, a simulation was performed where a change in the number of particles

due to damping was allowed by not renormalising the wave function. The parameters g,

ε and N were chosen exactly the same as mentioned in section 5.3.1, but without rotating

the potential.

For both damping models a decrease of the number of particles can be seen. The simu-

lation with damping model B lost 0.0077% of the particles within 200 rotations, whereas
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with damping model A more than 50% were lost.

To get comparable losses a extremely low γA between 1×10−9 and 2×10−9 was needed for

imaginary damping. However, that little damping was not able to hinder the condensate

from showing instabilities, which can be seen by the increasing energy shown in figure 10.

Here, the energy of the simulation with γA = 2 × 10−9 is compared to the energy cor-

responding to the simulation with damping model B. In the case of small damping with

Model A, no vortices were observed.

This can be understood in such a way that, even though both damping models loose

exactly the same amount of particles, model B removes energy faster due to the loss of

particles with higher kinetic energy.

For systems with a time dependent potential higher k-values get excited over time so that

the influence of the k-dependent damping becomes stronger due to a greater overlap of

the wave function in k-space and the damping potential.
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Figure 10: Energy. Same parameters as in figure 2, except for a smaller γA = 2× 10−9 and parameters

for model B as described in figure 5.3.3. It can be seen that a γA that creates the same loss of particles

results in a high gain of energy and diffusion of the condensate.

5.4 Parameter Choice

The relation between k0 and the healing length k0 = 2π
6 ξ
≈ 5, presented in equation (27)

was found out empirically, by running simulations with varying damping parameters and

comparing the results.

It was obvious that k0 should be smaller than the k-value corresponding to the edges of

the simulation box in k-space k0 >
2π
∆x

for a certain step size in real space ∆x. If k0 is on
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the other hand chosen too low k0 = 2π
6.5 ξ

. 4, higher excitations that would have caused

vortices will be damped too fast.

Even though this effect could be compensated by choosing a smaller γB, a larger k0 is

favourable, because then γB can be used to tune the loss of particles. When k0 is set to

a specific value by using equation (27), a value of γB ≈ 0.01 turned out to be a good

starting point.

On the other hand, it turned out that with higher k0 the simulation does not yield sta-

tionary states as fast, especially if a step function is chosen instead of a smoother damping

function.

The effect of improperly chosen parameters is shown exemplary in figure 11. The upper

graph shows the time evolution of the angular momentum for the parameters chosen for

the simulations before. The second graph shows the effect of a large k0. Even though

vortices are created, it takes the simulation longer to stabilise. The third and fourth

graph show simulations where no vortices were created, by either a too small k0 or too

large γB, respectively.
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Figure 11: Angular momentum for different damping parameters. The first graph corresponds to a

simulation with correctly chosen k0 and γB . When k0 is chosen too large (second graph), the system will

not stabilise as fast, but if chosen too low higher excitations are hindered (third graph). The last graph

shows that also a simulation with too high γB does not show vortices as well.
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5.5 Effect of Quartic Potential

It has already been stated, that quadrupole excitations are needed to create vortices in

BECs in a rotating trap. These modes are naturally excited by a trapping potential like

V̂x4(r, t) = c4
1

2

(
(1 + ε)2 x̃4 + (1− ε)2 ỹ4

)
(35)

with x̃ = x cos(Ωt) − y sin(Ωt) and ỹ = x sin(Ωt) + y cos(Ωt).[3]. The parameter c4 is

the strength of the quartic potential that will be added to the harmonic trap from equa-

tion (34).

The effect of the additional quartic potential on the trapping potential can be seen in

figure 12. In this plot, the black lines are isolines of the original external potential of the

simulations done before. These are compared with isolines of potentials with different

quartic fractions. The quartic part results in a relative strengthening of the potential

along the main axes.
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Figure 12: Isolines of V (r, 0) for different quartic potential strengths c4 with the potential used for the

simulation in figure 5. The function values of the isolines are 0.2, 1 and 2. It can be seen that the

additional quartic potential adds just a small deformation.

It is clear, that a simulation with high quartic potential fraction excites the quadrupole

mode to a greater extend, so that vortices should be created faster. This behaviour can

be seen in figure 13, where the time evolution of the angular momentum of simulations

with different quartic potential fractions are compared. A purely quadratic potential

takes about 40 rotations, whereas a simulation with a c4 of 0.01 creates the first vortex

after less than 10 rotations.
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For a large quartic potential fraction c4 no scissors mode was observed. Instead, vortices

began to collocate on the borders and entered the condensate simultaneously within the

first 10 rotations.
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Figure 13: Time dependency of the angular momentum for different quartic potential strengths c4. All

other parameters were kept exactly the same as for the simulations in section 5.3.3. It can be seen that

a potential strength of 0.001 did slightly accelerate the creation of vortices. For c4 = 0.01 vortices were

created within the first 10 rotations and stabilised extremely fast.

5.6 Dynamics of Vortex Creation

This chapter will give an insight into the dynamics of the creation of vortices depending

on the rotation frequency of the trap. Two systems with different coupling constants g

were simulated using damping model B. The quadratic trapping potential was rotated

with frequency Ω, which was turned on linearly within 3τ and held constant afterwards.

To investigate the dynamics of the trapped BEC, several simulations with different max-

imum rotational frequencies were performed, which allowed an estimation of the critical

rotational frequency. The results of the critical frequency were compared to equation (12)

which uses the Thomas-Fermi approximation that only holds for large g.

5.6.1 g=25

The first set of simulations was performed for g = 25 with k0 = 2.5 according to the

estimate k0 = 2π/6 ξ from equation (27) and γB = 0.01. The chemical potential µ = 3.01

was found by propagating the system in imaginary time and measuring the change of

normalisation. By inserting µ into equation (12), one gets a critical rotation frequency

of ΩTF = 0.56.
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The results of the simulation at t = 200τ are shown in figure 14. It can be seen that for

small Ω < 0.7 the asymmetry of the condensate increases with increasing Ω. For Ω = 0.7

the density shows two vortices at the edge of the condensate. The critical velocity for

which a vortex enters the condensate was found to be Ωc ≈ 0.725, which is 30% higher

than the value obtained from the Thomas-Fermi limit due to the comparatively small g.

From this critical frequency on, an increase in Ω yielded an increase in the number of

vortices.

Figure 14: Density of the wave function at t = 200τ with k-dependent damping for different rotational

frequencies. The simulation parameters were: ∆t = 0.0025, g2D = 25, ωx = 0.95 and ε = 0.0975.

According to the estimation k0 ≈ 2π
6 ξ , k0 was set to 2.5 and γB = 0.01. The estimated critical frequency

for this system is Ωc ≈ 0.725, which is higher than the theoretical value of ΩTF = 0.56.

A good way to show the dynamics of the system is to compare the time evolutions of the

angular momenta, which is done in figure 15. In the case of Ω = 0.65, only a small elliptic

deformation of the condensate can be seen which adds only little angular momentum.
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Figure 15: Angular momentum for the simulation described in figure 14. For Ω = 0.7, which was the

case with two vortices on the outside of the condensate, strong oscillations in the angular momentum

were observed. These oscillations correspond to two vortices which periodically enter opposed edges of

the condensate. The simulation for Ω = 0.725 resulted in a single-vortex state.

In the case of Ω = 0.7 an oscillation of the angular momentum between 0 and 1 was

observed, whose origin will be shown in detail. For the critical velocity Ω = 0.725 the

equilibration of the system into a vortex state with lz = 1 can be seen after t = 170τ . For

Ω = 0.8 the angular momentum converged to a value of 2 when the stable state shown

in figure 14 was reached after t = 160τ .

Figure 16 shows how a vortex entered the BEC for Ω = 0.725. The vortices on the edge of

the condensate came closer over time until one vortex entered the condensate and slowly

spiralled inwards.
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Figure 16: Time evolution of the density of the wave function for the simulation with Ω = 0.725 described

in figure 14. It can be seen that the vortex marked with a red arrow slowly spiralled inwards.

The angular momentum for the simulation Ω = 0.7 showed an interesting pattern. In

figure 17 the density of the condensate was plotted for different points in time during

these oscillations. The red and blue arrows mark pairs of vortices that move in and out

of the edges of the condensate periodically. At t = 52τ the angular momentum is at a

minimum where the four vortices have the same distance from the center of the cloud.

When the red marked vortices then enter the condensate until t = 58τ the angular mo-

mentum increases to 1 and likewise decreases when they leave again. This process is then

repeated with the blue vortices from t = 62τ on.

Other kinds of oscillatory behaviour in the angular momentum can be seen in simulations

where Ω > Ωc. As an example, the time evolution of the simulation with Ω = 0.725 is

shown at t = 50τ in figure 18. Two vortices, that lay on opposite sides of the condensate

and circle around it can be seen. The frequency of this oscillation is higher than in the

previously mentioned case of Ω = 0.7.
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Figure 17: Time evolution of the density of the wave function for the simulation with Ω = 0.7 described

in figure 14. The red and blue arrows mark the positions of vortices that enter and leave the edges of

the condensate periodically.
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Figure 18: Time evolution of the density of the wave function for the simulation with Ω = 0.725 described

in figure 14. Two vortices, that circle around the edges of the condensate can be seen. Compared to

figure 17, a larger Ω results in a oscillation with higher frequency.

5.6.2 g=250

The same procedure as in section 5.6.1 was also carried out with a coupling constant of

g = 250, γB = 0.01 and k0 = k in accordance with equation (27). The density after 200

rotations and time dependency of the angular momentum for different rotation frequen-

cies are plotted in figures 19 and 20, respectively.

In the simulations a critical velocity of Ωc = 0.50 was found, which is higher than the

value ΩTF = 0.31 in the Thomas-Fermi limit. Due to similar parameters as in the simu-

lation of Madison et al. , the density for the frequency Ω = 0.7 looks similar to the vortex

lattice shown in figure 5.

The time dependency of the simulations with g = 250 look very similar to each other,

which can be seen for example in the angular momentum which oscillates with a high

frequency in all cases. A typical time dependency of the motion of the condensate during

these oscillations in the angular momentum can be seen in figure 21. It shows that the

condensate gets an elliptic shape which is rotated relatively to the axes of the potential.
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In comparison to the simulations with lower g shown in figure 17, more density fluctua-

tions were found on the edges of the condensate within the first 50 rotations of the trap.

Due to the smaller healing length compared to g = 25 the vortices are able to lie closer

to each other. However, the oscillatory behaviour shown in figure 17 was not observed.

Like in figure 16, the vortex entered the condensate from the outside which can be seen

in figure 22. Compared to the simulation with g = 25 the inward motion of the vortex is

much slower.

Figure 19: Density of the wave function after 200 rotations with k-dependent damping for different

rotational frequencies. The parameters were: ∆t = 0.001, g2D = 250, ωx = 0.95 and ε = 0.0975.

According to the estimation k0 ≈ 2π
6 ξ , k0 was set to 5 and γB = 0.01. The critical frequency was found

to be Ωc = 0.5
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Figure 20: Angular momentum for the simulations described in figure 19. It can be seen that the rotation

excites modes with high frequencies in all cases. In the simulation with Ω = 0.5, the vortex enters the

condensate at t = 100τ .
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Figure 21: Time dependency of the density for the simulation with Ω = 0.5. The oscillations that are

visible in the angular momentum correspond to elliptic shape deformations.

Figure 22: Time evolution of the density for the simulation with Ω = 0.5 described in figure 14. It can

be seen that the vortex spirals inwards slowly.
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6 Toroidal Bose–Einstein Condensates

In this section, the effect of damping models A and B on the simulations of stirred toroidal

BECs will be treated. Recently, a paper by Eckel et al. showed discrepancies between sim-

ulations of the GPE using damping model A and the corresponding experiment [8]. The

goal is to investigate whether the simulation results differ for damping model A or B and

whether model B leads to better agreement with the experiment.

The toroidal shape of the condensate was created by a static harmonic potential along

the radial direction centered around a certain radius R:

V̂static(r) =
1

2
mω2

⊥

(√
x2 + y2 −R

)2

(36)

The unit system will be defined like in equation (40), with the oscillator length of the

harmonic potential along the radial direction x0 =
√
~/mω⊥, the mass of the atoms m

and the trap frequency ω⊥ along the radial direction:

x′ = x/x0 (37)

E ′ = E/ (~ω⊥) (38)

g′ = g/

(
~2

m
x0

)
(39)

Ω′ = Ω/0.01ω⊥ (40)

As time scale the quantity τ = 2π/Ω0 will be used.

The prefactor in the definition of Ω′ is motivated by a different choice in reference length

compared to the experiment of Eckel et al. . In our system, the reference is the oscillator

length x0 compared to R = 10x0 in the case of Eckel et al. By choosing the reference

length as Eckel, a reference frequency of Ω0 = ~/mR2 arises. This frequency is linked to

the trap frequency via

Ω0 =
~

m (10x0)2 = 0.01ω⊥ (41)

so that Ω′ = Ω/Ω0 = Ω/ω⊥ 0.01 follows.

The radius was chosen so that the shape of the ground state density of the BEC roughly

matches the shape of the experimentally found ground state density of Eckel et al. This
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length was also chosen by Piazza et al. for their numerical investigation of the critical

velocity of a toroidal BEC [19].

Figure 23 shows the ground state of this trap for g = 700 and R = 10 with the oscillator

length x0 found by 500 imaginary time propagation steps.

Figure 23: Ground state density. The radius R = 10 of the condensate was chosen to be comparable

with Eckel et al. [8]. The parameters were: g = 700, ∆t = 0.01.

In addition to the static potential, a time dependent Gaussian potential along the az-

imuthal direction was used to stir the condensate by creation of a rotating weak link.

Hence, the full external potential had the form

V̂(r, t) =
1

2
(
√
x2 + y2 −R)2 + Θ(x̃)U(t)µ exp

(
−ỹ2/2σ2

)
/
√

2π σ2 (42)

with x̃ = x cos(Ωt) − y sin(Ωt), ỹ = x sin(Ωt) + y cos(Ωt), the Heaviside function Θ(x̃)

and the variance of the Gaussian σ = 0.5. The potential strength is determined by the

function U(t).

By stirring the BEC with Ω 6= 0, a phase jump along the azimuthal direction can be

induced when the stirring frequency is larger than a critical frequency Ω ≥ Ω+
c . To loose

this phase jump again, the stirring frequency may be even lower than Ω+
c . The frequency

at which the phase jump is lost again will be called Ω−c . The difference in these critical

stirring frequencies was experimentally investigated and calculated by Eckel et al. in 2014

[8].
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6.1 Experiment and Calculations of Eckel et al.

The experimental procedure by Eckel et al. that can be seen in figure 24 consisted of two

steps. The first step prepared the previously equilibrated BEC in a state with either

lz = 0 or lz = 1 by rotating the potential with Ω = 0 (dashed blue curve) or Ω = Ω1

(red curve), respectively. Here, Ω1 was fixed to a value greater than Ω+
c so that the

outcome using this frequency was always a state with lz = 1. The potential strength of

the rotating potential was turned on linearly, held constant at U1 and turned off linearly

afterwards (green curve).

The next step was the actual measurement. The same procedure as before was done, but

with a different potential strength U2 and frequency Ω2. Depending on the previously

prepared state, the rotation could induce a phase jump, annihilate a phase jump or nei-

ther of the two. When the BEC was originally prepared in the state lz = 0, a phase jump

could only be induced when Ω2 > Ω+
c . Likewise, for lz = 0, a phase jump could only be

destroyed for Ω2 < Ω−c .

Figure 24: Experimental procedure of the experiments by Eckel et al. The first step prepares the BEC in

either a state with lz = 1 or lz = 0 depending on the chosen Ω1. In the second step, the same procedure

was repeated with varying rotating potential strength U and rotational frequency Ω2 to test whether a

phase jump was lost or induced. Image taken from reference [8].

To get the exact critical frequencies for a certain U2 several experiments with varying

Ω2 were performed. The resulting angular momentum was averaged over 20 experiments

and plotted over Ω2. A hysteresis curve could then be fitted to determine Ω+
c and Ω−c .
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In figure (25) the hysteresis width Ω+
c − Ω−c depending on the potential strength U2 is

plotted. Notice, that by defining the unit system as before, the reference frequency Ω0

defined in equation (41) equals 1.

Not only the experimental results, but also the results for calculations of this setup by

Eckel et al. are plotted. The green dots show the experimental data with uncertainties,

the magenta line is the prediction of an effective one-dimensional hydrodynamic model

with corresponding uncertainty shown as magenta band and the cyan diamonds show the

results of GPE simulations in the laboratory frame using damping model A with either

γA = 0 (open) or γA = 0.01 (filled).

It can be seen, that all of the calculations yielded a much greater hysteresis width than

the experiment. However, for large rotating potential strengths the loop width Ω+
c −Ω−c

approaches 0 in all cases.

This discrepancy raises the question, whether a better damping model, e.g. model B,

improves the result of the simulations or if there is no difference between model A and B.

To do so, a stirred toroidal BEC will be simulated for two different coupling constants g

and varying potential strengths to test whether damping models A and B yield different

critical frequencies.

Figure 25: Hysteresis width of the experiments of Eckel et al. depending on the rotating potential

strength. In our reduced units and by defining the potential as in equation (42) the quantities have

to be interpreted as (Ω+
c − Ω−

c ) /Ω0 7→ Ω+
c − Ω−

c and U2 µ0 7→ U2. The green dots show the experimen-

tal data, the magenta line shows the results of an effective one-dimensional hydrodynamic model with

uncertainty shown as magenta band. The diamonds show the results of GPE simulations using either

γA = 0 (open) or γA = 0.01 (filled). Image taken from reference [8].

6.2 Simulations

In contrast to the experiment of Eckel, a different precedure was used in order to test the

critical frequencies for a certain U and g within one simulation. First, the wave function
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was prepared to be in the ground state of the trap via 500 imaginary time steps. Then

the potential strength was turned on linearly within ∆t/τ = 0.2 to U = U0 and held

constant afterwards, as shown in figure 26. During this step, the weak link was created.

Notice, that the abscissa for the abscissa in figure 26 was magnified tenfold from −0.2 to 0.

Then, to induce angular momentum, Ω was turned on with a slope of (∆Ω/∆(t/τ) = 0.1).

When the first phase jump along the radial direction was observed by directly plotting

the phase along the line
√
x2 + y2 = R the critical frequency Ω+

c was reached. This event

is marked as green dash-dotted line in the time scale, while Ω+
c is shown as green dashed

line. The effect of the phase jump can be seen in the angular momentum which peaked

to a value of lz = 1.

Next, the rotational frequency was held constant at Ω+
c within ∆t = 2π/Ω+

c , shown as

shaded area, to give the system time to equilibrate. Then Ω is decreased with the same

slope as before until the phase jump is lost again, which marks Ω−c . At this point, also

the angular momentum drops down to a value far below 1. The critical frequency and the

time when it was reached are shown as blue dashed and dash-dotted lines, respectively.

Figure 26: Schematic setup of the simulations. Note, that the abscissa is magnified tenfold until t/τ = 0.

The potential strength U was turned on linearly within ∆t = 0.2τ . Then the rotational frequency Ω was

ramped up linearly with rate ∆Ω/∆(t/τ) = 0.1 until a phase jump was induced at Ω = Ω+
c . Then, Ω

was held constant (shaded area) to give the system time for equilibration, before Ω was ramped down

again with the same slope as before. The phase jump was lost when the second critical frequency Ω−
c

was reached. The third plot shows that the angular momentum jumps to 1 when the phase jump was

induced, and drops significantly when it was lost again.
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6.2.1 g=700

First, simulations with g = 700 were performed using either damping model A with

γA = 0.01 or damping model B using k0 = 2.5 and γB = 0.01. The estimation of k0 was

based on equation (27) with µ = 3.3. The ground state for this simulation has already

been shown in figure 23.

Figure 27 shows the density of the BEC plotted along the line with radius r = R = 10,

i.e. the line where the potential is at its minimum, after switching on U before the rotation

starts for different potential strengths. It can be seen that the depletion of the BEC varies

over a broad range, so that a broad Ω range was covered with the simulations.
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Figure 27: Density of the condensate along the line
√
x2 + y2 = R = 10. The parameters were: g = 700,

∆t = 0.01. This plot shows how the rotating potential alters condensate when turned on fully for different

U .

The critical frequencies estimated from simulations using damping model A or B are

shown in figure 28. Here, the upper and lower curves correspond to Ω+
c and Ω−c , respec-

tively. Even though a similar hysteresis behaviour was observed, no significant differences

in the Ω±c were observed between damping models A and B. This can be also seen in fig-

ure 29 that shows the hysteresis width, which can be directly compared to figure 25. A

similar behaviour was observed, even though the g value was chosen randomly.
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Figure 28: Critical rotational frequencies for various potential strengths. The parameters were: g = 700,

∆t = 0.01. The upper two curves and lower two curves in this plot correspond to Ω+
c and Ω−

c , respectively.

The simulations were performed using damping model A with γA = 0.01 and model B with k0 = 2.5 and

γB = 0.01. No significant difference in the observed critical frequencies for damping model A and B can

be seen.

Figure 29: Hysteresis loop size for various potential strengths, using the data in figure 28.

6.2.2 g=2000

The same procedure as before was repeated with g = 2000 to test, whether a different

result could be achieved. For damping model B, γB was set to 0.01 and k0 = 5 was

estimated using equation (27) with µ = 6.5.

The ground state density of the BEC after imaginary time propagation is shown in

figure 30 and the density along the line
√
x2 + y2 = R = 10 can be seen in figure 31.

35



Figure 30: Ground state density of the condensate. The parameters were: g = 2000, ∆t = 0.005.
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Figure 31: Density of the condensate along the line
√
x2 + y2 = R = 10. The parameters were: g = 2000,

∆t = 0.01. This plot shows how the rotating potential alters condensate when turned on fully for different

U .

Figures 32 and 33 show the estimated critical rotational frequencies and the hysteresis

loop size, respectively. As in the case of g = 700, no significant difference between models

A and B can be seen, which leads to the conclusion that in this type of simulation,

damping model B does not yield any further improvement.
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Figure 32: Critical rotational frequencies for various potential strengths. The upper two curves and lower

two curves in this plot correspond to Ω+
c and Ω−

c , respectively. The simulations were performed using

damping model A with γA = 0.01 and model B with k0 = 5 and γB = 0.01. No significant difference

in the observed critical frequencies using damping model A and B can be seen. The parameters were:

g = 2000, ∆t = 0.01.

Figure 33: Hysteresis loop size for various potential strengths, using the data in figure 32. The hysteresis

loop size for g = 700 shown in figure 29 is plotted in grey.

Compared to the experiment and calculations of Eckel et al. in figure 25, the hysteresis

size in figure 33 decreases to 0 slower. From the trend, that a higher g results in a greater

hysteresis loop width it may be followed, that either the g value that describes the system

of Eckel et al. is lower than 700. However, also the arbitrary choice of R and a different

definition of the rotating potential may be the reason for discrepancies.

Even though the experiment was not directly comparable with our simulation data, it

was found out that there is no difference in the resulting critical frequencies for damping

model A and B in the treated cases.
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7 Conclusion

It was found out that the momentum-dependent damping model B showed several ad-

vantages over the commonly used damping model A. By using damping model A in the

rotating frame of reference, the BEC would always be damped into the ground state

under rotation, which would not have shown the correct dynamics. For this reason, the

calculations were performed in the laboratory frame. When simulating a BEC in a har-

monic trap under rotation model A did not predict the onset of vortices, even though

simulations with model B were able to describe the dynamic creation of vortices accu-

rately so that the dynamics of the experiment of Madison et al. [5] could be reproduced.

Using damping model B, we investigated the dynamic creation of vortices and the neces-

sity of quadrupole excitations for them to enter the condensate. It was shown, that the

first vortex that enters the condensate rotated with the critical frequency spirals inward

for two different coupling constants. A regular pattern of vortices oscillating in and out

of the BEC was observed for a small g just below the critical rotation frequency. Though,

for larger g the dynamics were more diffuse due to a denser arrangement of vortices along

the edges of the BEC.

Lastly, damping models A and B were tested on stirred toroidal BECs, where a discrep-

ancy between the experimental and simulation results in the critical stirring frequencies

was found by Eckel et al. , Even though, damping model B was better suited to describe

BECs in harmonic traps, it yielded the same results as model A, which leads us to the

conclusion that it does not agree with the experimental results of Eckel et al. either.
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