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Coulomb drag

In a Fermi liquid:

M.B. Pogrebinskii, Sov. Phys. Semicond. 11, 372 (1977)
P.J. Price, Physica 117B, 750 (1983)

L. Zheng and A.H. MacDonald, Phys. Rev. B 48, 8203 (1993)
A.-P. Jauho and H. Smith, Phys. Rev. B 47, 4420 (1993)

...

T.J. Gramila et al., Phys. Rev. Lett. 66, 1216 (1991)

www.sp.phy.cam.ac.uk

... what else ?
RD ≡

Vdrag

Idrive
∝ 1

τD
∼ T 2

http://www.sp.phy.cam.ac.uk
http://www.sp.phy.cam.ac.uk


Coulomb drag in an electron-hole bilayer

For a theoretical discussion of drag in an e-h bilayer see:
G. Vignale and A.H. MacDonald, Phys. Rev. Lett. 76, 2786 (1996)

B.Y-.K. Hu, Phys. Rev. Lett. 85, 820 (2000)

J.A. Seamons et al., Phys. Rev. Lett. 102, 026804 (2009)

A.F. Croxall et al., Phys. Rev. Lett. 101, 246801 (2008)

Note the anomalous upturn at low T
(signature of exciton condensation ?)



Friction in spin-polarized transport: 
spin Coulomb drag

I. D'Amico and G. Vignale, Phys. Rev. B 62, 4853 (2000)

Force between particles (electrons, atoms, etc) with antiparallel (pseudo)spin

Leading term in the spin drag relaxation rate starts at second-order
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Spin Coulomb drag: experimental

Exp: C.P. Weber et al., Nature 437, 1330 (2005)
Theory: S.M. Badalyan, C.S. Kim, and G. Vignale, Phys. Rev. Lett. 100, 016603 (2008)



Spin drag in two-component cold 
Fermi gases?

MP and G. Vignale, Phys. Rev. Lett. 98, 266403 (2007)



Spin and charge dynamics in a 
1D cold Fermi gas

“Charge”:  
atomic mass density

“Spin”:  
two internal (hyperfine) 
atomic states (e.g. 6Li)

tunable interaction strength...

M. Olshanii, Phys. Rev. Lett. 81, 938 (1998)
array of 1D tubes
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A. Recati, P.O. Fedichev, W. Zwerger, and P. Zoller, Phys. Rev. Lett. 90, 020401 (2003)



Wavepacket dynamics within 
linear-response theory

The problem we want to solve  boils down to:
(i) calculating the small q limit of the response functions above
(ii) converting these equations into partial differential equations for density 
and spin packets

χ−1
ρρ (q, ω)n(q, ω) = 0

χ−1
SzSz

(q, ω)s(q, ω) = 0

Density-density linear-response function

Spin-spin linear-response function

MP and G. Vignale, Phys. Rev. Lett. 98, 266403 (2007)



Small q limit of the linear-response
functions

χ−1
ρρ (q → 0, ω) =

mω2

nq2
− m

n
v2
F

κ0

κ

χ−1
SzSz

(q → 0, ω) =
mσω(ω + iτ−1

sd )
nq2

− m

n
v2
F

χσ0

χσ

Density-density linear-response function

Spin-spin linear-response function

MP and G. Vignale, Phys. Rev. Lett. 98, 266403 (2007)

Single pole at the sound velocity: vρ = vF (κ0/κ)1/2

Single damped pole at the spin velocity: vσ = vF χσ0/χσ



Spin-drag relaxation rate in 1D

MP and G. Vignale, Phys. Rev. Lett. 98, 266403 (2007)
D. Rainis et al., Phys. Rev. B 77, 035113 (2008)
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Differential equations for 
density and spin packets

�
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σ ∂2
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x

�
s(x, t) + D−1

σ ∂ts(x, t) = 0

Density channel (a simple D’Alembert equation)

Spin channel: a damped D’Alembert equation

Dσ = v2
στsd(T ) =

nτsd(T )
mσχσ

Spin diffusion constant

1717-1783

MP and G. Vignale, Phys. Rev. Lett. 98, 266403 (2007)



Numerical results

kBT = 2.0 εF

kBT = 1.0 εFkBT = 0.0 εF

MP and G. Vignale, Phys. Rev. Lett. 98, 266403 (2007)



Spin-drag in a two component Bose gas

R.A. Duine and H.T.C. Stoof, Phys. Rev. Lett. 103, 170401 (2008)
see also related Viewpoint: MP and G. Vignale, Physics 2, 87 (2009)

1
τsd

∼ T−5/2



Our work motivated by
experimental evidence of 

ferromagnetic correlations in a 
trapped two-component Fermi gas

G-B. Jo et al., Science 325, 1521 (2009)

For earlier theoretical work on ferromagnetism see e.g.:
M. Houbiers et al. Phys. Rev. A 56, 4864 (1997)

L. Salasnich et al., J. Phys. B: At. Mol. Opt. Phys. 33, 3943 (2000)
M. Amoruso et al., Eur. Phys. J. D 8, 361 (2000)

T. Sogo and H. Yabu, Phys. Rev. A 66, 043611 (2002)
R.A. Duine and A.H. MacDonald, Phys. Rev. Lett. 95, 230403 (2005)

The experiment is not yet well understood by it stimulated 
a great deal of discussion:

G.J. Conduit and B.D. Simons, Phys. Rev. Lett. 103, 200403 (2009)
        H. Zhai, Phys. Rev. A 80, 051605(R) (2009)

        M. Babadi et al., arXiv:0908.3483v2 ...
... and many others (including recent QMC work)



Itinerant ferromagnetism in a Fermi gas 
of cold atoms

G-B. Jo et al., Science 325, 1521 (2009)

T/TF = 0.55

T/TF = 0.22

T/TF = 0.12
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Stoner ferromagnetism (I)

Ĥ =
�
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Minimal model: competition between kinetic energy and short-
range repulsive interactions between antiparallel-spin fermions:
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Stoner criterion for ferromagnetism:



Stoner ferromagnetism (II)

1 +
U

2
lim
q→0

lim
ω→0

χ0(q, ω) = 0

Stoner criterion for ferromagnetism:

standard techniques, the atomic system can be prepared in
a pseudospin coherent (ferromagnetic) state, in which all
atoms share the same spinor:

j!FM!t"i #
1!!!
2

p
Y

jkj<21=3kF

!cyk;" $ ei!’%"Et=@"cyk;#"jvaci: (1)

(cyk;! creates an atom with momentum k and hyperfine spin
!.) In Eq. (1), ’ specifies the orientation of the magnetic
order parameter in the x% y plane and "E is the Zeeman
energy difference between the hyperfine states. (Since the
number of atoms in each is conserved, we can transform to
a rotating wave picture and let "E! 0.) Overall spin
polarizations in the ẑ direction are not accessible. This
fully spin coherent state always has a lower energy than
the phase-separated state discussed in Refs. [16–18] since,
in the magnetic language, the latter has a domain wall
which costs finite energy. Ferromagnetism in these systems
will be manifested by persistent coherence between hyper-
fine states.

In this Letter, we argue that ferromagnetism occurs on
the repulsive interaction side of a Feshbach resonance. Our
principle results are summarized in Figs. 1 and 3. We find
that (i) Hartree-Fock theory underestimates the tendency
towards ferromagnetism [42], (ii) the transition between
ferromagnetic and paramagnetic states is first-order at low
temperatures, and (iii) the coherence decay rate decreases
rapidly as the thermodynamic stability region of the ferro-
magnetic state is approached from the repulsive side of the
resonance.

Second-order perturbation theory.—It is convenient to
view the gas as a mixture of two independent noninteract-
ing gases of spinless fermions. The grand-canonical
Hamiltonian of the system is then
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with g # 4#a@2=m. The chemical potentials are deter-
mined by n! # @p0!=@"!, where n! is the density of
atoms in hyperfine state j!i, and the pressure of the non-
interacting gas is given by

p0! # kBT
V

X

k
ln&1$ e%$!%k%"!"'; (3)

with kBT the thermal energy, V the volume, and %k #
@2k2=2m the single-particle dispersion. The entropy den-
sity is determined by s # @!p0$ $ p0%"=@T, and the total
free energy density is given by f!n$; n%" # e% Ts, with
the total energy density expressed as the sum of three
contributions, e # e!0" $ e!1" $ e!2". The first two contri-
butions correspond to Hartree-Fock theory and are given
by
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where Nk;! is a Fermi occupation factor. The contribution
to the energy density that is second-order in interactions is
given by [13]

e!2" # % 2g2

V3

X0Nk1;$Nk2;%!Nk3;$ $ Nk4;%"
%k1

$ %k2
% %k3

% %k4

; (5)

where the prime indicates that the sum is over wave vectors
such that k1 $ k2 # k3 $ k4. The above second-order
correction takes into account the so-called unitarity limit,
i.e., the energy dependence of the vacuum scattering am-
plitude to all orders in ka, to second order [43]. Note also
that, because of the use of the renormalized interaction
strength g, this second-order term is not negative definite
as in the case of the electron gas.

Results.—The magnetization results, summarized in
Fig. 1, were obtained by numerically minimizing the total
free energy f!n%; n$" vs & ( !n$ % n%"=!n$ $ n%" for a
series of temperatures and total densities n$ $ n% #
k3F=3#

2. At zero temperature, we find that the system
becomes partially polarized if kFa ) 1:054 and reaches
the fully polarized state at kFa # 1:112. For higher tem-
peratures, interactions have to be stronger to polarize the
system. For temperatures T < Ttc, where Ttc ’ 0:2TF, with
TF the Fermi temperature, the transition is discontinuous,
and the magnetization exhibits a jump. The jump becomes
smaller with increasing temperature, vanishing at Ttc. The
inset shows the transition temperature as a function of kFa.
A line of first-order transitions, denoted by the solid line,
joins a line of continuous transitions, denoted by the dotted
line at T # Ttc and kFa # 1:119.

The first-order behavior at low temperatures is expected
on the basis of the arguments of Belitz et al. [11]. In our
case, the gapless modes that drive the transition first order
are particle-hole excitations. The coupling of these excita-
tions to the magnetization is neglected in Hartree-Fock

 0

 0.1

 0.2

 0.3

 0.4

 1.1  1.3  1.5  1.7

T
F

M
/T

F

kF a

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.05  1.1  1.15  1.2  1.25  1.3  1.35  1.4  1.45  1.5

m
ag

ne
tiz

at
io

n

kF a

FIG. 1. Magnetization & as a function of kFa, for various
temperatures. From left to right T=TF # 0; 0:1; 0:15; 0:2; 0:25.
The dashed lines indicate magnetization jumps. The inset shows
the critical temperature as a function of the gas parameter. The
solid line indicates first-order transitions, and the dotted line
second-order transitions. The dashed line is the Hartree-Fock
theory result.

PRL 95, 230403 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
2 DECEMBER 2005

230403-2

π

2
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Spin-drag relaxation rate
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Spin-drag relaxation rate above critical temperature

Boltzmann transport and collision integral



Effective interactions

A↑↓(q, ω) = U����
direct term

+
U2

4
χρρ(q, ω)

� �� �
density fluctuations

− U2

4
χSzSz (q, ω)

� �� �
� spin fluctuations

− 2
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4
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⊥ spin fluctuations

C.A. Kukkonen and A.W. Overhauser, Phys. Rev. B 20, 550 (1979)
G.F. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (CUP, Cambridge, 2005)

see also A.V. Chubukov and D.L. Maslov, Phys. Rev. Lett. 103, 216401 (2009)

Scattering amplitude: density, longitudinal and transverse spin fluctuations
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Temperature dependence of 
the spin-drag relaxation rate

R.A. Duine, MP, H.T.C. Stoof, and G. Vignale, Phys. Rev. Lett. 104, 220403 (2010)



Temperature dependence of 
the spin-drag relaxation rate

Hint for experimentalists:
measure the damping of the spin dipole mode:

G.M. Bruun et al., Phys. Rev. Lett. 100, 240406 (2008)

R.A. Duine, MP, H.T.C. Stoof, and G. Vignale, Phys. Rev. Lett. 104, 220403 (2010)



The spin-drag relaxation rate
as a function of interaction strength

R.A. Duine, MP, H.T.C. Stoof, and G. Vignale, Phys. Rev. Lett. 104, 220403 (2010)



Temperature dependence of 
the spin diffusion constant

R.A. Duine, MP, H.T.C. Stoof, and G. Vignale, Phys. Rev. Lett. 104, 220403 (2010)
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Conclusions and future perspectives

Thank you for your attention!
For more details please take a look at:

R.A. Duine, MP, H.T.C. Stoof, and G. Vignale, Phys. Rev. Lett. 104, 220403 (2010) 

 We have shown that when the ferromagnetic state is 
approached from the normal side, the spin-drag relaxation rate is 
strongly enhanced near the critical point

 We have also determined the temperature dependence of the 
spin diffusion constant 

 In a trapped gas, the spin-drag relaxation rate determines the 
damping of the spin dipole mode, which therefore provides a 
precursor signal of the ferromagnetic phase transition that may 
be used to experimentally determine the proximity to the 
ferromagnetic phase

 What’s next? Currently extending the theory to T < Tc, to 
lower dimensionality, and to electron-hole bilayers


