Spin drag in cold Fermi gases

"Cold gases meet many-body theory", Grenoble (France), August 7th 2010

Collaborators

Rembert Duine (Utrecht, The Netherlands) Henk Stoof (Utrecht, The Netherlands) Giovanni Vignale (UMO, USA)

This talk mainly based on:

R.A. Duine, MP, H.T.C. Stoof, and G. Vignale, Phys. Rev. Lett. 104, 220403 (2010)

Outline

Introduction and motivations

- Coulomb drag between closely spaced electronic circuits
- Coulomb drag close to exciton condensation
- Friction in spin-polarized transport: spin drag
- O Itinerant ferromagnetism in a Fermi gas of ultracold atoms

Freery of spin drag in the vicinity of itinerant ferromagnetism

O Model Hamiltonian and Stoner mean-field theory

Spin-drag relaxation rate

• Effective interactions: density, longitudinal and transverse spin fluctuations

Numerical results

Spin-drag relaxation rate

O Spin diffusion constant

Conclusions and future perspectives

Outline

Introduction and motivations

- Coulomb drag between closely spaced electronic circuits
- Coulomb drag close to exciton condensation
- Friction in spin-polarized transport: spin drag
- O Itinerant ferromagnetism in a Fermi gas of ultracold atoms
- Free Theory of spin drag in the vicinity of itinerant ferromagnetism
- O Model Hamiltonian and Stoner mean-field theory
- O Spin-drag relaxation rate
- Effective interactions: density, longitudinal and transverse spin fluctuations

Numerical results

- O Spin-drag relaxation rate
- O Spin diffusion constant

Conclusions and future perspectives

Coulomb drag

M.B. Pogrebinskii, Sov. Phys. Semicond. 11, 372 (1977)
P.J. Price, Physica 117B, 750 (1983)
L. Zheng and A.H. MacDonald, Phys. Rev. B 48, 8203 (1993)
A.-P. Jauho and H. Smith, Phys. Rev. B 47, 4420 (1993)

In a Fermi liquid:

$$R_{\rm D} \equiv rac{V_{\rm drag}}{I_{\rm drive}} \propto rac{1}{ au_{\rm D}} \sim T^2$$
 ... what else ?

T.J. Gramila et al., Phys. Rev. Lett. 66, 1216 (1991)

Coulomb drag in an electron-hole bilayer

For a theoretical discussion of drag in an e-h bilayer see: G. Vignale and A.H. MacDonald, Phys. Rev. Lett. **76**, 2786 (1996) B.Y-.K. Hu, Phys. Rev. Lett. **85**, 820 (2000)

Friction in spin-polarized transport: spin Coulomb drag

Force between particles (electrons, atoms, etc) with antiparallel (pseudo)spin

$$F_{\sigma\bar{\sigma}} = -m\frac{n_{\bar{\sigma}}}{n}\frac{v_{\sigma} - v_{\bar{\sigma}}}{\tau_{\rm sd}}$$

Rate of change of spin-up momentum

$$\frac{dP_{\uparrow}}{dt} = -\frac{1}{\tau_{\rm sd}}P_{\uparrow}$$

Leading term in the spin drag relaxation rate starts at second-order

$$\frac{1}{\tau_{\rm sd}} = \frac{\hbar^2 n}{n_{\uparrow} n_{\downarrow} m k_{\rm B} T} \int_0^{+\infty} \frac{dq}{2\pi} q^2 v_q^2 \int_0^{+\infty} \frac{d\omega}{\pi} \frac{\Im m \chi_{\uparrow}^{(0)}(q,\omega) \Im m \chi_{\downarrow}^{(0)}(q,\omega)}{\sinh^2 [\hbar \omega / (2k_{\rm B} T)]}$$

I. D'Amico and G. Vignale, Phys. Rev. B 62, 4853 (2000)

Spin Coulomb drag: experimental

Exp: C.P. Weber et al., Nature **437**, 1330 (2005) Theory: S.M. Badalyan, C.S. Kim, and G. Vignale, Phys. Rev. Lett. **100**, 016603 (2008)

Spin drag in two-component cold Fermi gases?

MP and G. Vignale, Phys. Rev. Lett. 98, 266403 (2007)

Spin and charge dynamics in a 1D cold Fermi gas

array of 1D tubes

"Charge": atomic mass density

$$\hat{\mathcal{H}} = \sum_{i} \frac{\hat{p}_i^2}{2m} + g_{1D} \sum_{i < j} \delta(\hat{x}_i - \hat{x}_j)$$

+ external potential

tunable interaction strength...

$$g_{\rm 1D} = \frac{2\hbar^2 a_{\rm 3D}}{ma_{\perp}^2} \frac{1}{1 - Aa_{\rm 3D}/a_{\perp}}$$

M. Olshanii, Phys. Rev. Lett. 81, 938 (1998)

"Spin": two internal (hyperfine) atomic states (e.g. ⁶Li)

A. Recati, P.O. Fedichev, W. Zwerger, and P. Zoller, Phys. Rev. Lett. 90, 020401 (2003)

Wavepacket dynamics within linear-response theory

Density-density linear-response function

$$\chi_{\rho\rho}^{-1}(q,\omega)n(q,\omega) = 0$$

Spin-spin linear-response function

$$\chi_{S_z S_z}^{-1}(q,\omega)s(q,\omega) = 0$$

The problem we want to solve boils down to: (i) calculating the small q limit of the response functions above (ii) converting these equations into partial differential equations for **density** and **spin** packets

MP and G. Vignale, Phys. Rev. Lett. 98, 266403 (2007)

Small q limit of the linear-response functions

Density-density linear-response function

$$\chi_{\rho\rho}^{-1}(q \to 0, \omega) = \frac{m\omega^2}{nq^2} - \frac{m}{n} v_{\rm F}^2 \frac{\kappa_0}{\kappa}$$

Single pole at the sound velocity: $v_
ho = v_{
m F} \; (\kappa_0/\kappa)^{1/2}$

Spin-spin linear-response function

$$\chi_{S_z S_z}^{-1}(q \to 0, \omega) = \frac{m_\sigma \omega (\omega + i\tau_{\rm sd}^{-1})}{nq^2} - \frac{m}{n} v_{\rm F}^2 \frac{\chi_{\sigma 0}}{\chi_{\sigma}}$$

Single damped pole at the spin velocity: $v_\sigma = v_{
m F} ~\chi_{\sigma 0}/\chi_\sigma$

MP and G. Vignale, Phys. Rev. Lett. 98, 266403 (2007)

Spin-drag relaxation rate in 1D

D. Rainis et al., Phys. Rev. B 77, 035113 (2008)

Differential equations for density and spin packets

Density channel (a simple D'Alembert equation)

$$\left(v_{\rho}^{-2}\partial_t^2 - \partial_x^2\right)n(x,t) = 0$$

Spin channel: a damped D'Alembert equation

$$\left(v_{\sigma}^{-2}\partial_t^2 - \partial_x^2\right)s(x,t) + D_{\sigma}^{-1}\partial_t s(x,t) = 0$$

Spin diffusion constant

$$D_{\sigma} = v_{\sigma}^2 \tau_{\rm sd}(T) = \frac{n\tau_{\rm sd}(T)}{m_{\sigma}\chi_{\sigma}}$$

MP and G. Vignale, Phys. Rev. Lett. 98, 266403 (2007)

Numerical results

MP and G. Vignale, Phys. Rev. Lett. 98, 266403 (2007)

Spin-drag in a two component Bose gas

R.A. Duine and H.T.C. Stoof, Phys. Rev. Lett. **103**, 170401 (2008) see also related Viewpoint: MP and G. Vignale, Physics **2**, 87 (2009)

Our work motivated by experimental evidence of ferromagnetic correlations in a trapped two-component Fermi gas

G-B. Jo et al., Science 325, 1521 (2009)

For earlier theoretical work on ferromagnetism see e.g.: M. Houbiers et al. Phys. Rev. A **56**, 4864 (1997) L. Salasnich et al., J. Phys. B: At. Mol. Opt. Phys. **33**, 3943 (2000) M. Amoruso et al., Eur. Phys. J. D **8**, 361 (2000) T. Sogo and H. Yabu, Phys. Rev. A **66**, 043611 (2002) R.A. Duine and A.H. MacDonald, Phys. Rev. Lett. **95**, 230403 (2005)

The experiment is not yet well understood by it stimulated a great deal of discussion:

G.J. Conduit and B.D. Simons, Phys. Rev. Lett. 103, 200403 (2009)
 H. Zhai, Phys. Rev. A 80, 051605(R) (2009)
 M. Babadi et al., arXiv:0908.3483v2 ...
 ... and many others (including recent QMC work)

Itinerant ferromagnetism in a Fermi gas of cold atoms

G-B. Jo et al., Science 325, 1521 (2009)

Outline

Section and motivations

- Coulomb drag between closely spaced electronic circuits
- Coulomb drag close to exciton condensation
- Friction in spin-polarized transport: spin drag
- O Itinerant ferromagnetism in a Fermi gas of ultracold atoms

Freery of spin drag in the vicinity of itinerant ferromagnetism

- O Model Hamiltonian and Stoner mean-field theory
- Spin-drag relaxation rate
- Effective interactions: density, longitudinal and transverse spin fluctuations

Numerical results

- O Spin-drag relaxation rate
- O Spin diffusion constant

Conclusions and future perspectives

Stoner ferromagnetism (I)

Minimal model: competition between kinetic energy and shortrange repulsive interactions between antiparallel-spin fermions:

$$\hat{\mathcal{H}} = \int d^3 \boldsymbol{x} \sum_{\alpha \in \{\uparrow,\downarrow\}} \hat{\psi}^{\dagger}_{\alpha}(\boldsymbol{x}) \left(-\frac{\hbar^2 \nabla_{\boldsymbol{x}}^2}{2m} - \mu \right) \hat{\psi}_{\alpha}(\boldsymbol{x}) + U \int d^3 \boldsymbol{x} \, \hat{\psi}^{\dagger}_{\uparrow}(\boldsymbol{x}) \hat{\psi}^{\dagger}_{\downarrow}(\boldsymbol{x}) \hat{\psi}_{\downarrow}(\boldsymbol{x}) \hat{\psi}_{\uparrow}(\boldsymbol{x})$$

$$\begin{aligned} \text{Density-density linear-response function} & \text{Spin-spin linear-response function} \\ \chi_{nn}(q,\omega) &= \frac{\chi_0(q,\omega)}{1 - \frac{U}{2}\chi_0(q,\omega)} & \chi_{S_zS_z}(q,\omega) = \frac{\chi_0(q,\omega)}{1 + \frac{U}{2}\chi_0(q,\omega)} \end{aligned}$$

Stoner criterion for ferromagnetism:

$$1 + \frac{U}{2} \lim_{q \to 0} \lim_{\omega \to 0} \chi_0(q, \omega) = 0$$

Stoner ferromagnetism (II)

R.A. Duine and A.H. MacDonald, Phys. Rev. Lett. 95, 230403 (2005)

Spin-drag relaxation rate

Boltzmann transport and collision integral

$$I_{coll}[f_{\boldsymbol{k},\uparrow}] \propto \int \frac{d^D \boldsymbol{k}'}{(2\pi)^D} \int \frac{d^D \boldsymbol{q}}{(2\pi)^D} \int_{-\infty}^{+\infty} d\omega \ |A_{\uparrow\downarrow}(q,\omega)|^2 [f_{\boldsymbol{k},\uparrow}(1-f_{\boldsymbol{k}+\boldsymbol{q},\uparrow})f_{\boldsymbol{k}',\downarrow}(1-f_{\boldsymbol{k}'-\boldsymbol{q},\downarrow}) - f_{\boldsymbol{k}+\boldsymbol{q},\uparrow}(1-f_{\boldsymbol{k},\uparrow})f_{\boldsymbol{k}'-\boldsymbol{q},\downarrow}(1-f_{\boldsymbol{k}',\downarrow})] \delta(\omega - \varepsilon_{\boldsymbol{k}+\boldsymbol{q},\uparrow} + \varepsilon_{\boldsymbol{k},\uparrow}) \delta(\omega + \varepsilon_{\boldsymbol{k}'-\boldsymbol{q},\downarrow} - \varepsilon_{\boldsymbol{k}',\downarrow})$$

Rate of change of spin-up momentum

$$\frac{d\boldsymbol{P}_{\uparrow}}{dt} = \sum_{\boldsymbol{k}} \boldsymbol{k} \ I_{\text{coll}}[f_{\boldsymbol{k},\uparrow}]$$

Spin-drag relaxation rate above critical temperature

$$\frac{1}{\tau_{\rm sd}(T)} = \frac{1}{4Mnk_{\rm B}T} \int \frac{d^D q}{(2\pi)^D} \frac{q^2}{D} \int_{-\infty}^{+\infty} \frac{d\omega}{\pi} |A_{\uparrow\downarrow}(q,\omega)|^2 \frac{[\Im m \ \chi^{(0)}(q,\omega)]^2}{\sinh^2[\omega/(2k_{\rm B}T)]}$$

Effective interactions

Scattering amplitude: density, longitudinal and transverse spin fluctuations

C.A. Kukkonen and A.W. Overhauser, Phys. Rev. B **20**, 550 (1979) G.F. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (CUP, Cambridge, 2005) see also A.V. Chubukov and D.L. Maslov, Phys. Rev. Lett. **103**, 216401 (2009)

Outline

- Section and motivations
- Coulomb drag between closely spaced electronic circuits
- Coulomb drag close to exciton condensation
- O Friction in spin-polarized transport: spin drag
- O Itinerant ferromagnetism in a Fermi gas of ultracold atoms
- Free Theory of spin drag in the vicinity of itinerant ferromagnetism
- O Model Hamiltonian and Stoner mean-field theory
- O Spin-drag relaxation rate
- O Effective interactions: density, longitudinal and transverse spin fluctuations

Numerical results

- Spin-drag relaxation rate
- O Spin diffusion constant

Conclusions and future perspectives

Temperature dependence of the spin-drag relaxation rate

R.A. Duine, MP, H.T.C. Stoof, and G. Vignale, Phys. Rev. Lett. 104, 220403 (2010)

Temperature dependence of the spin-drag relaxation rate

R.A. Duine, MP, H.T.C. Stoof, and G. Vignale, Phys. Rev. Lett. 104, 220403 (2010)

The spin-drag relaxation rate as a function of interaction strength

R.A. Duine, MP, H.T.C. Stoof, and G. Vignale, Phys. Rev. Lett. 104, 220403 (2010)

Temperature dependence of the spin diffusion constant

R.A. Duine, MP, H.T.C. Stoof, and G. Vignale, Phys. Rev. Lett. 104, 220403 (2010)

Outline

- Section and motivations
- Coulomb drag between closely spaced electronic circuits
- O Coulomb drag close to exciton condensation
- O Friction in spin-polarized transport: spin drag
- O Itinerant ferromagnetism in a Fermi gas of ultracold atoms
- Free Theory of spin drag in the vicinity of itinerant ferromagnetism
- O Model Hamiltonian and Stoner mean-field theory
- O Spin-drag relaxation rate
- O Effective interactions: density, longitudinal and transverse spin fluctuations
- Numerical results
- O Spin-drag relaxation rate
- O Spin diffusion constant

Conclusions and future perspectives

Conclusions and future perspectives

• We have shown that when the ferromagnetic state is approached from the normal side, the spin-drag relaxation rate is strongly enhanced near the critical point

We have also determined the temperature dependence of the spin diffusion constant

In a trapped gas, the spin-drag relaxation rate determines the damping of the spin dipole mode, which therefore provides a precursor signal of the ferromagnetic phase transition that may be used to experimentally determine the proximity to the ferromagnetic phase

 \bigcirc What's next? Currently extending the theory to T < $T_c,$ to lower dimensionality, and to electron-hole bilayers

For more details please take a look at:

R.A. Duine, MP, H.T.C. Stoof, and G. Vignale, Phys. Rev. Lett. 104, 220403 (2010)

