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Unitary Fermi gas of atoms

Let us consider a gas of atomic fermions with two equally-populated spin

components: n↑ = n↓.

The system is dilute if the effective radius re of the inter-atomic potential

is much smaller than the average interparticle separation d = n−1/3, with

n = n↑ + n↓, namely

re � d . (1)

The system is strongly-interacting if the scattering length a of the inter-

atomic potential greatly exceeds the average interparticle separation d =

n−1/3, i.e.

d � |a| . (2)

The unitarity regime∗ is characterized by both these conditions:

re � d � |a| . (3)

Under these conditions the dilute but strongly-interacting Fermi gas is called

unitary Fermi gas.

∗S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).



Ideally, the unitarity limit corresponds to

re = 0 and a = ±∞ . (4)

The only length characterizing the Fermi gas in the unitarity limit is the

average interparticle distance d = n−1/3.

In this case the ground-state energy per particle must be

E0

N
= ξ

3

5

~2

2m
(3π2)2/3n2/3 = ξ

3

5
εF , (5)

with εF Fermi energy of the ideal gas and ξ a universal unknown parameter.

Monte Carlo calculations and experimental data with dilute and ultracold

atoms suggest∗ that the unitary Fermi gas is a superfluid with ξ ' 0.4.

∗S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).



Collective and single-particle excitations

We model∗ the many-body quantum Hamiltonian Ĥ of the uniform unitary

Fermi gas with the simple effective Hamiltonian

Ĥ = E0 +
∑

q

εcol(q) b̂+q b̂q +
∑

σ=↑,↓

∑

p

εsp(p) ĉ+pσĉpσ , (6)

where

E0 =
3

5
ξNεF (7)

is the ground-state energy,

εcol(q) (8)

is the energy of the bosonic collective excitations, and

εsp(p) (9)

is the energy of the fermionic single-particle excitations.

∗Inspired by the Landau theory of elementary excitations: L.D. Landau and E.M. Lifshits,
Statistical Physics, Part 2, vol. 9 (Butterworth-Heinemann, London, 1980).



Recently we have found∗ the dispersion relation of collective elementary ex-

citations as

εcol(q) =

√

c21q2 +
λ

4m2
q4 , (10)

where

c1 =

√

ξ

3
vF , (11)

is the zero-temperature first sound velocity, with vF = (~/m)(3π2n)1/3 the

Fermi velocity of a noninteracting Fermi gas. The term with λ takes into

account the increase of kinetic energy in the Fermi system due the spatial

variation of the density. We use λ = 0.25.

Expanding the dispersion relation (11) for low momenta we get

εcol(q) = c1q +
λ

8m2c1
q3 , (12)

where the linear term is the familiar phonon dispersion relation (the so-called

Bogoliubov-Anderson mode) while the cubic correction depends on both the

sound velocity c1 and the parameter λ.

∗L.S. and F. Toigo, Phys. Rev. A 78, 053626 (2008); L.S., F. Ancilotto, and F. Toigo,
Laser Phys. Lett. 7, N. 1, 78 (2010).



At zero temperature the fermionic single-particle excitations can be written

as

εsp(p) =

√

(
p2

2m
− ζεF )2 + ∆2

0 (13)

where ζ is a parameter which takes into account the interaction between

fermions with εF the Fermi energy of the ideal Fermi gas.

According to recent Monte Carlo results∗: ζ ' 0.9 and γ = ∆0/εF ' 0.45.

Expanding this dispersion relation around the minimum momentum p0 =√
2mµ = ζ1/2pF , with pF =

√
2mεF the Fermi momentum of the ideal Fermi

gas, we find

εsp(p) = ∆0 +
1

2m0
(p − p0)

2 , (14)

where the effective mass m0 is given by

m0 =
m∆0

2ζεF
. (15)

∗P. Magierski, G. Wlazlowski, A. Bulgac, and J.E. Drut, Phys. Rev. Lett. 103, 210403
(2009).
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Elementary excitations of the unitary Fermi gas: bosonic collective excitations

εcol(p) (dashed line) and fermionic single-particle excitations εsp(p) (solid line).

The collective mode εcol(p) decays in the single-particle continuum when there

is the breaking of Cooper pairs, namely for εcol(p) = 2∆0 (dotted line).



Low-temperature thermodynamics

At very low temperature the thermodynamic properties of the superfluid uni-

tary Fermi gas can be obtained from the collective spectrum and considering

an ideal Bose gas of elementary excitations with the bosonic distribution

fB(q) = 〈̂b+q b̂q〉 =
1

eεcol(q)/kBT − 1
, (16)

where 〈Â〉 = Tr[Âe−Ĥ/kBT ]/Tr[e−Ĥ/kBT ] is the thermal average of the operator

Â with T the absolute temperature and kB is the Boltzmann constant.

As T increases also the fermionic single-particle excitations become important.

Thus there is also the effect of an ideal Fermi gas of single-particle excitations

with the fermionic distribution

fF (p) = 〈ĉ+pσĉpσ〉 =
1

eεsp(p)/kBT + 1
, (17)

which is spin independent.



The Helmholtz free energy F of any thermodynamic system is given by

F = −kBT lnZ , (18)

where

Z = Tr[e−Ĥ/kBT ] , (19)

is the partition function of the system.

Using our effective Hamiltonian the free energy of our unitary Fermi gas can

be written as F = F0 + Fcol + Fsp, where

F0 =
3

5
ξNεF , (20)

Fcol = kBT
∑

q

ln
[

1 − e−εcol(q)/(kBT)
]

, (21)

Fsp = −2 kBT
∑

p

ln
[

1 + e−εsp(p)/(kBT)
]

, (22)

where the factor 2 is due to the two spin components.



The total Helmholtz free energy of the low-temperature unitary Fermi gas

can be then written as

F = NεFΦ

(

T

TF

)

, (23)

where Φ(x) is a function of the scaled temperature x = T/TF , with TF =

εF/kB, given by

Φ(x) =
3

5
ξ +

3

2
x
∫ ηcut

0
ln
[

1 − e−ε̃col(η)/x
]

η2dη

− 3x
∫ +∞

0
ln
[

1 + e−ε̃sp(η)/x
]

η2dη . (24)

Here the discrete summations have been replaced by integrals, ε̃col(η) =
√

η2(λη2 + 4ξ/3), and ε̃sp(η) =
√

(η2 − ζ)2 + γ2.

In the first integral which appears in Φ(x) there is an upper bound ηcut.

Collective mode decays in the single-particle continuum when there is the

breaking of Cooper pairs, namely for εcol(q) = 2∆0, thus in scaled units when

ηcut satisfies the equation

ηcut
2(ληcut

2 +
4

3
ξ) = 4γ2 . (25)



By using the expansions for the elementary excitations, adopting the Maxwell-

Boltzmann distribution for fermionic single-particles instead of the Fermi-

Dirac one, and setting ηcut = +∞ one gets the approximate formula

Φ(x) ' 3

5
ξ − π4

√
3

80 ξ3/2
x4 +

λπ63
√

3

896 ξ7/2
x6 − 3

√
2π

2
ζ1/2γ1/2x3/2e−γ/x . (26)

Under the further assumption that λ = 0 this formula becomes exactly the

simple model∗ proposed Bulgac, Drut, and Magierski (BDM)

Φ(x) ' 3

5
ξ − π4

√
3

80 ξ3/2
x4 − 3

√
2π

2
ζ1/2γ1/2x3/2e−γ/x . (27)

∗A. Bulgac, J.E. Drut, and P. Magierski, Phys. Rev. Lett 96, 090404 (2006).



From the Helmholtz free energy F we can immediately obtain the chemical

potential

µ =

(

∂F

∂N

)

T,V
= εF [

5

3
Φ

(

T

TF

)

− 2

3

T

TF
Φ′
(

T

TF

)

] , (28)

where Φ′(x) = dΦ(x)
dx and one recovers µ0 = ξεF in the limit of zero-temperature.

The entropy S is related to the free energy F by the formula

S = −
(

∂F

∂T

)

N,V
= −NkBΦ′

(

T

TF

)

. (29)

In addition, the internal energy E, given by

E = F + TS = NεF

[

Φ

(

T

TF

)

− T

TF
Φ′
(

T

TF

)]

. (30)

Important: our model does not predict a phase-transition. It is a low-

temperature model for the superfluid phase. A phase transition for this uni-

form system has been predicted∗ and observed† at Tc ' 0.15 TF .

∗E. Burovski, N. Prokof’ev, B. Svistunov, and M. Troyer, PRL 96, 160402 (2006).
†S. Nascimbene et al., Nature 463, 1057 (2010).
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Thermodynamical quantities of the unitary Fermi gas deduced from our model.

Zero-temperature parameters of elementary excitations: ξ = 0.42, λ = 0.25,

ζ = 0.9, and γ = 0.45 (from which ηcut = 1).



Comparison with MC results and experimental data

It is interesting to compare our model with other theoretical approaches and

also with the available experimental data.

In the next two figures we report the data of internal energy E and chemical

potential µ obtained by Bulgac, Drut, and Magierski∗ with their Monte Carlo

simulations of the atomic unitary gas.

We insert also the very recent experimental data of Horikoshi et al.† for the

unitary Fermi gas of 6Li atoms but extracted from the gas under harmonic

confinement.

∗A. Bulgac, J.E. Drut, and P. Magierski, Phys. Rev. Lett 96, 090404 (2006).
†M. Horikoshi, S. Nakajima, M. Ueda, and T. Mukaiyama, Science 442, 327 (2010).
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Atomic unitary Fermi gas. Scaled internal energy E/(NεF ) as a function of

the scaled temperature T/TF . Filled circles: Monte Carlo simulations of BDM.

Open squares with error bars: experimental data of Horikoshi et al. Solid line:

our model. Dashed line: BDM model.
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Atomic unitary Fermi gas. Scaled chemical potential E/(NεF ) as a function

of the scaled temperature T/TF . Filled circles: Monte Carlo simulations of

BDM. Open squares with error bars: experimental data of Horikoshi et al.

Solid line: our model. Dashed line: BDM model.



Dilute neutron matter: MC vs our thermo model

The dilute neutron matter is predicted to fill the crust of neutron stars∗

MC data have been produced for dilute neutron matter at finite temperature

by Wlazlowski and Magierski† with the density n = 0.003 fm−3, i.e. inter-

particle separation d = n−1/3 = 6.93 fm.

For the neutron-neutron interaction: re ' 2.8 fm and a ' −18.5 fm. This

means that in the calculations: re < d < |a|.

Thus this dilute neutron matter is close but not equal to the unitarity Fermi

gas (re � d � |a|). The zero-temperature parameters of elementary excita-

tions are slightly different from those of the unitary Fermi gas.

Fermi temperatures. Neutron matter: TF ' 5·1010 Kelvin; ultracold atomic

vapors: TF ' 10−7 Kelvin.

∗A. Schwenk and C.J. Pethick, PRL 95, 160401 (2005).
†G. Wlazlowski and P. Magierski, Int. J. Mod. Phys. E 18, 919 (2009).
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Dilute neutron matter at the density n = 0.003 fm−3. Scaled internal en-

ergy E/(NεF ) as a function of the scaled temperature T/TF . Filled circles:

Monte Carlo simulations. Solid line: our model. Dashed line: BDM model.

Zero-temperature parameters of elementary excitations (extracted from MC

spectral weight function): ξ = 0.46, λ = 0.25, ζ = 0.82, and γ = 0.29 (from

which ηcut = 0.68).



Conclusions

• In our model the low-temperature thermodynamics is obtained by using

the zero-temperature elementary excitations.

• Our model does not predict the superfluid-normal phase transition, but it

works quite well in the superfluid regime (also slightly above the expected

critical temperature Tc ' 0.15).

• The improvement of our model with respect to the BDM one is mainly

due to the inclusion of the ultraviolet cut-off ηcut in the bosonic spectrum,

related to the breaking of Cooper pairs.


