

Construction of Localized Wave Functions and analysis of disordered Hubbard model parameters

S. Q. Zhou and D. M. Ceperley

Department of Physics University of Illinois

szhou3@illinois.edu Localized Wave Functions

・ 同 ト ・ ヨ ト ・ ヨ ト …

Outline

Motivation

- Experiments on Disordered Optical Lattice
- Existing Theory of Localized Basis Functions
- 2 Statistics

Statistics

Probability distributions

- Matching density matrices
- Convergence Test

Summary

Experiments on Disordered Optical Lattice Existing Theory of Localized Basis Functions

▲ □ ▶ ▲ □ ▶ ▲

3

Outline

Motivation

Experiments on Disordered Optical Lattice

- Existing Theory of Localized Basis Functions
- 2 Statistics
 - Probability distributions

3 Method

- Matching density matrices
- Convergence Test

Summary

Experiments on Disordered Optical Lattice Existing Theory of Localized Basis Functions

(日)

.⊒...>

White et al. experiment of ⁸⁷Rb atoms

• Atoms trapped in cubic optical lattice: *a* = 406 nm

$$U_{L}(\mathbf{r}) = S_{L} \times \left[\cos\left(\frac{2\pi \mathbf{n}_{1} \cdot \mathbf{r}}{a}\right) + \cos\left(\frac{2\pi \mathbf{n}_{2} \cdot \mathbf{r}}{a}\right) + \cos\left(\frac{2\pi \mathbf{n}_{3} \cdot \mathbf{r}}{a}\right) \right]$$

RPL 102, 055301 (2009)

Experiments on Disordered Optical Lattice Existing Theory of Localized Basis Functions

• A speckle field produced by a lens and a diffuser

RPL 102, 055301 (2009)

- Strength: $\langle U_D(\mathbf{r}) \rangle = S_D$
- Spatial auto-correlation: $\Gamma(\mathbf{r} \mathbf{r}') = \langle V_{S}(\mathbf{r}) V_{S}(\mathbf{r}') \rangle$

Motivation Statistics Method

Summary

Experiments on Disordered Optical Lattice Existing Theory of Localized Basis Functions

< 同 > < 回 > < 回 >

Outline

Motivation

- Experiments on Disordered Optical Lattice
- Existing Theory of Localized Basis Functions
- 2 Statistic
 - Probability distributions

3 Method

- Matching density matrices
- Convergence Test

Summary

Experiments on Disordered Optical Lattice Existing Theory of Localized Basis Functions

э

Mapping Continuum Hamiltonian to Second Quantized Form

Continuum Hamiltonian

$$\mathcal{H}_{N} = \sum_{\alpha} \left[\frac{1}{2m} \mathbf{p}_{\alpha}^{2} + U(\mathbf{r}_{\alpha}) \right] + \frac{1}{2} \sum_{\alpha < \beta} V(\mathbf{r}_{\alpha} - \mathbf{r}_{\beta})$$

Second quantized Hamiltonian

$$h = -\sum_{\langle ij\rangle} t_{ij} a_i^{\dagger} a_j + \sum_i \epsilon_i n_i$$
$$+ \frac{1}{2} \sum_i u_i n_i (n_i - 1) + \frac{1}{2} \sum_{\langle ij\rangle} \tilde{u}_{ij} n_i n_j + \cdots \cdots$$

Experiments on Disordered Optical Lattice Existing Theory of Localized Basis Functions

Maximally Localized Wannier Functions

In a periodic potential

$$w_{ni}(\mathbf{r}) = w_n(\mathbf{r} - \mathbf{R}_i) = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} \psi_{n\mathbf{k}}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{R}_i}$$

Maximally localized when purely real.

< 🗇 ▶

Experiments on Disordered Optical Lattice Existing Theory of Localized Basis Functions

・ 戸 ト ・ ヨ ト ・ ヨ ト

Disordered Lattice

Construct an orthonormal subset of states

- Wannier-like localized
- Span the lowest energy manifold

$$\langle \mathbf{r} | w_i \rangle = w_i(\mathbf{r}), \quad i = 1, 2, ..., N$$

- Orthogonality
- Free of sign problem $t_{ij} \ge 0$
- Various kinds of generalizations
 - Perturbative approach (W.Kohn, ...)
 - Variational approach (N.Marzari, D.Vanderbilt, ...)
 - Envelope-function formalism (B. Foreman,...)
 -

Motivation

Statistics Method Summary Experiments on Disordered Optical Lattice Existing Theory of Localized Basis Functions

・ 戸 ト ・ ヨ ト ・ ヨ ト

Measure of Localization and Energy

Hubbard Parameters

- Onsite energy: $\epsilon_i = \int w_i^*(\mathbf{r}) \hat{\mathcal{H}}_1 w_i(\mathbf{r}) d^3 \mathbf{r}$
- Hopping coefficient: $t_{ij} = -\int w_i^*(\mathbf{r}) \hat{\mathcal{H}}_1 w_j(\mathbf{r}) d^3\mathbf{r}$
- On-site interaction: $u_i = \frac{4\pi a_s \hbar^2}{m} \int |w_i(\mathbf{r})|^4 d^3\mathbf{r}$
- Off-site interaction: $\tilde{u}_{ij} = \frac{4\pi a_s \hbar^2}{m} \int |w_i(\mathbf{r})|^2 |w_j(\mathbf{r})|^2 d^3\mathbf{r}$

Short range model potential

$$V(\mathbf{r}-\mathbf{r}') = \frac{4\pi a_{s}\hbar^{2}}{m}\delta\left(\mathbf{r}-\mathbf{r}'\right)$$

Probability distributions

Parameter setting for statistics

- Depth of optical lattice: $S_L = 14 E_R$
- Strength of random field: $S_D = 1 E_R$
- 1000 samples of 6³ sites lattice

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Probability distributions

Outline

Motivation

- Experiments on Disordered Optical Lattice
- Existing Theory of Localized Basis Functions
- 2

Statistics

Probability distributions

3 Method

- Matching density matrices
- Convergence Test

Summary

伺き くほき くほう

Probability distributions

Probability distribution for on-site energy

- A steep onset at low energy
- A tail at high energy
- Fit to exponential

 $P(\varepsilon) \sim \exp\left(-\varepsilon/\Gamma
ight)$

where $\Gamma\approx 0.97 E_R$

Correlation

$$\frac{\left\langle \varepsilon_{i}\varepsilon_{j}\right\rangle -\left\langle \varepsilon_{i}\right\rangle \left\langle \varepsilon_{j}\right\rangle }{\left\langle \varepsilon^{2}\right\rangle -\left\langle \varepsilon\right\rangle ^{2}}\approx0.49$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Probability distributions

Probability distribution for n.n. hopping coefficients

Asymmetrically centered

Only positive t_(ij) were found

Relative width

$$\frac{\delta t}{\langle t \rangle} = 0.15$$

э

э.

э

 Prokofev, Troyer, et al. arXiv:0909.4593

Probability distributions

Probability distribution for on-site interaction

Probability distributions

Correlation between on-site energy and hopping

Matching density matrices Convergence Test

Outline

▲ □ ▶ ▲ □ ▶ ▲

3

Matching density matrices Convergence Test

Continuum density matrix

• Unnormalized single particle density matrix

$$\rho\left(\mathbf{r},\mathbf{r}';\beta\right) = \langle \mathbf{r}|\mathbf{e}^{-\beta\hat{\mathcal{H}}_{1}}|\mathbf{r}'\rangle.$$

• Choose a trial orthogonal set of localized basis

$$w_i(\mathbf{r}; \mathbf{0}) = \mathbf{1}$$
, inside Wigner Seitz cell

$$=$$
 0, otherwise

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Motivation Statistics Method

Matching density matrices Convergence Test

Course-graining of continuum model

• Find h such that

$$\begin{array}{lll} S_{ij}(\beta) & = & \langle w_i(0) | e^{-\beta \hat{\mathcal{H}}_1} | w_j(0) \rangle \\ & = & e^{-\beta \hat{h}} \end{array}$$

Formal solution

$$\hat{h} = \lim_{eta o \infty} -\frac{1}{eta} \log \hat{S}(eta)$$

ヘロン 人間 とくほ とくほ とう

3

Matching density matrices Convergence Test

Outline of procedure

- 1. Trial basis set
 - $w_i(\mathbf{r}; \mathbf{0}) = \mathbf{1}$, inside Wigner Seitz cell = $\mathbf{0}$, otherwise
- 2. Imaginary time evolution

$$\ket{w_i(\tau)} = e^{- au\hat{\mathcal{H}}_1} \ket{w_i(0)}, \quad i = 1, ..., N$$

• 3. Construct overlap matrix

$$\hat{S}(au) = \left\langle w_i(au) | w_j(au) \right\rangle$$

• 4. Löwdin orthogonalization

$$|w_i(\tau)\rangle \mapsto \hat{S}^{-1/2}(\tau)|w_i(\tau)\rangle$$

Zhou and Ceperley, Phys. Rev. A. 81 013402 (2010)

Convergence Test

Outline

- - Probability distributions

Method

- Matching density matrices
- Convergence Test

< 回 > < 回 > <

3

Matching density matrices Convergence Test

Hubbard Parameters: $S_L = 14 E_R$, $S_D = 1 E_R$

 $h_{ij}(eta) = \langle ilde{w}_i(eta/2) | \hat{\mathcal{H}}_1 | ilde{w}_j(eta/2)
angle$

Motivation Statistics Method

Matching density matrices Convergence Test

Summary

Hubbard Parameters: $S_L = 14 E_R$, $S_D = 1 E_R$

⁸⁷Rb: *a*_s = 5.29 nm = 0.013 *a*

Motivation Statistics Method

Matching density matrices Convergence Test

Summary

Spatial Spread and Drift: $S_L = 14$, $S_D = 1$

< 🗇 ▶

Matching density matrices Convergence Test

Energy convergence rate: $S_L = 14$, $S_D = 1$

• Convergence rate:

$$\Gamma = \frac{1}{N} \sum_{i} \left| \frac{d}{d\tau} E_{\text{lattice}}^{(i)} \right|$$

Recall the assumption

$$\lim_{\beta \to \infty} \left(\frac{d\hat{h}}{d\beta} \right) = 0$$

Matching density matrices Convergence Test

Density of states

- $S_D < 2$, gap persists
- $S_D \ge 2$, fail to converge

Summary and Outlook

Summary

- Coarse-grained effective lattice Hamiltonian
- Wannier-like basis spanning the lowest energy manifold
- Imaginary time projection and Löwdin orthogonalization
- Correlated disorder

Outlook

- More than one basis functions per site at strong disorder
- Evaluate Hubbard U beyond perturbation theory
- QMC calculation using the parameterized Hubbard model

・ 戸 ト ・ ヨ ト ・ ヨ ト